
 Prof.P.Y.Hole

 Chap1: JDBC

Introduction:

 JDBC stands for Java Database Connectivity.

 JDBC is a Java API to connect and execute the query with the

database.

 It is a specification from Sun Microsystems that provides a

standard abstraction(API or Protocol) for Java applications to

communicate with various databases.

 Architecture of JDBC

1. Application: It is a java applet or a servlet that communicates

with a data source.

2. The JDBC API: The JDBC API allows Java programs to execute

SQL statements and retrieve results.

3. DriverManager: Acts as an interface between a java application

and a database. It contains drivers. Driver sends the request of a

java application to the database. After processing the request, the

database sends the response back to the driver.

 Prof.P.Y.Hole

4. JDBC drivers: To communicate with a data source through

JDBC, you need a JDBC driver that intelligently communicates

with the respective data source.

Components of JDBC

JDBC has four major components that are used for the interaction

with the database.

1. JDBC API

2. JDBC Test Suite

3. JDBC Driver Manger

4. JDBC ODBC Bridge Driver

1) JDBC API: JDBC API provides various interfaces and methods to

establish easy connection with different databases.

1. javax.sql.*;

2. java.sql.*;

2) JDBC Test suite:

JDBC Test suite facilitates the programmer to test the various

operations such as deletion, updation, insertion that are being

executed by the JDBC Drivers.

3) JDBC Driver manager:

 JDBC Driver manager loads the database-specific driver into an

application in order to establish the connection with the

database.

 The JDBC Driver manager is also used to make the database-

specific call to the database in order to do the processing of a

user request.

4) JDBC-ODBC Bridge Drivers:

https://www.javatpoint.com/java-jdbc

 Prof.P.Y.Hole

 JDBC-ODBC Bridge Drivers are used to connect the database

drivers to the database.

 The bridge does the translation of the JDBC method calls into

the ODBC method call.

 It makes the usage of the sun.jdbc.odbc package that

encompasses the native library in order to access the ODBC

(Open Database Connectivity) characteristics.

JDBC API

 Interfaces

 Classes

 url

 package

1)Interfaces
• Driver interface: Represents a database driver. All JDBC

driver classes must implement the Driver interface

• Connection : enables you to establish a connection

between a java application & a database.

• Statement : enables you to execute SQL statements.

• PreparedStatement: allows to execute dynamic SQL

statements and stored procedures

• CallableStatement: provides methods for executing

stored procedures that return OUT parameter values

• ResultSet : Represent the information retrieved from a

database.

• DatabaseMetaData: enables to get information about

database

• ResultSetMetaData: allows to get information about a

returned result

2)Classes

• SQLException : Provides information about the exception that

occur while interacting with database.

 Prof.P.Y.Hole

• DriverManager : responsible for loading Jdbc drivers and

creating connection objects

3)URL
• Provides a way of identifying a database so that the appropriate

driver will recognize it and establish a connection with it

• Jdbc:<subprotocol>:<subname>

(Database Connectivity Mechanism) (Identify database)

Steps to Create JDBC Application:

1) Register the driver class

 The forName() method of Class class is used to register the driver class.

 This method is used to dynamically load the driver class.

Syntax of forName() method

1. public static void forName(String className)throws ClassNotFound

Exception

Example

Here, Java program is loading oracle driver to esteblish database

connection.

Class.forName(“sun.jdbc.odbc.JdbcOdbcDriver”)

2) Create the connection object

 The getConnection() method of DriverManager class is used to establish

connection with the database.

Syntax of getConnection() method

 Prof.P.Y.Hole

1. 1) public static Connection getConnection(String url)throws SQLEx

ception

2. 2) public static Connection getConnection(String url,String name,Stri

ng password)

3. throws SQLException

Example

Connection con=DriverManager.getConnection(“ jdbc:odbc:MY

DSN”);

3) Create the Statement object

 The createStatement() method of Connection interface is used to create statement.

 The object of statement is responsible to execute queries with the database.

Syntax of createStatement() method

1. public Statement createStatement()throws SQLException

Example to create the statement object

1. Statement stmt=con.createStatement();

4) Execute the query

 The executeQuery() method of Statement interface is used to execute

queries to the database.

 This method returns the object of ResultSet that can be used to get all

the records of a table.

Syntax of executeQuery() method

1. public ResultSet executeQuery(String sql)throws SQLException

 Prof.P.Y.Hole

Example to execute query

1. ResultSet rs=stmt.executeQuery("select * from emp");

2.

3. while(rs.next()){

4. System.out.println(rs.getInt(1)+" "+rs.getString(2));

5. }

5) Close the connection object

 By closing connection object statement and ResultSet will be closed

automatically.

 The close() method of Connection interface is used to close the connection.

Syntax of close() method

1. public void close()throws SQLException

Example to close connection

1. con.close();

 Prof.P.Y.Hole

Types of statements:

There are three types of statements in JDBC namely, Statement,

Prepared Statement, Callable statement.

1)Statement

 The Statement interface represents the static SQL statement.

 It helps you to create a general purpose SQL statements using

Java.

Creating a statement

 You can create an object of this interface using

the createStatement() method of the Connection interface.

 Create a statement by invoking the createStatement() method

as shown below.

 Statement stmt = null;

 stmt = conn.createStatement();

 Prof.P.Y.Hole

Executing the Statement object

Once you have created the statement object you can execute it using

one of the execute methods namely, execute(), executeUpdate() and,

executeQuery().

ResultSet executeQuery(<SQL Statement>):

 It executes SQL statement.

 This method is used when you need to retrieve data from a

database table using the SELECT statement.

Statement stmt = cnn.createStatement();

ResultSet rs = stmt.executeQuery(<SQL statement>)

int executeUpdate(<SQL statement>):

 execute the SQL statement and returns the number of data rows

that are affected after processing the SQL statement.

 When you modify data in a database table using INSERT,

DELETE, UPDATE.

Statement stmt = cnn.createStatement();

int count = stmt.executeUpdate(<SQL Statement>);

Boolean execute((<SQL statement>): execute SQL statement &

returns a Boolean value.

2)CallableStatement

 Callable statements are implemented by the CallableStatement

object.

 Prof.P.Y.Hole

 A CallableStatement is a way to execute stored procedures in a

JDBC-compatible database.

Creating a CallableStatement

You can create an object of the CallableStatement (interface) using

the prepareCall() method of the Connection interface.

This method accepts a string variable representing a query to

 call the stored procedure and returns a CallableStatement object.

A CallableStatement can have input parameters or, output parameters

or, both.

To pass input parameters to the procedure call you can use place

holder and set values to these using the setter methods (setInt(),

setString(), setFloat()) provided by the CallableStatement interface.

Suppose, you have a procedure name myProcedure in the database

you can prepare a callable statement as:

//Preparing a CallableStatement

CallableStatement cstmt = con.prepareCall("{call myProcedure(?, ?,

?)}");

Setting values to the input parameters

You can set values to the input parameters of the procedure call using

the setter methods.

These accept two arguments one is an integer value representing the

placement index of the input parameter and the other is an int or,

String or, float etc… representing the value you need to pass an input

parameter to the procedure.

Note: Instead of index you can also pass the name of the parameter in

String format.

 Prof.P.Y.Hole

cstmt.setString(1, "Raghav");

cstmt.setInt(2, 3000);

cstmt.setString(3, "Hyderabad");

Executing the Callable Statement

Once you have created the CallableStatement object you can execute

it using one of the execute() method.

cstmt.execute();

3)PreparedStatement

 A PreparedStatement, in contrast to a CallableStatement, is used

for SQL statements that are executed multiple times with

different values.

 For instance, you might want to insert several values into a

table, one after another.

 The advantage of the PreparedStatement is that it is pre-

compiled, reducing the overhead of parsing SQL statements on

every execution.

 Initially, this statement uses place holders “?” instead of

parameters, later on, you can pass arguments to these

dynamically using the setXXX() methods of

the PreparedStatement interface.

 e.g.

String qry =“select Books.Price, Books.Title” +“from Books,

Publishers” +“where Books.Pub_Id = Publishers.Pub_Id”+

“and Publishers.Name = ?”;

PreparedStatement pst = con.preparedStatement(qry);

Before executing the Prepared Statement, we must bind the host

variable to actual values with set method.

 Prof.P.Y.Hole

e.g.

We can set a string to publisher name as follows.

pst.setString(1, publisher);

where,

first argument is position of host variable.

second argument is actual value for host variable.

All the host variable stay bound unless we change it with set

method.

Then we can execute prepared query as follows.

ResultSet rs = pst.executeQuery();

Working with ResultSet

ResultSet interface

The object of ResultSet maintains a cursor pointing to a row of a

table. Initially, cursor points to before the first row.

next(): Moves the current row in Result Set by one.

getXXX(int colnum): Returns value of the specified column for

current row.

getXXX(String cname): Returns value of the specified column for

current row.

Where,

 XXX is a type such as Int, String, Double, Date, etc.

close(): closes the current result set.

 Prof.P.Y.Hole

Scrollable ResultSet:

It allows user to move both direction, and also jump to any specific

position.

By default Resultset is not scrollable. We can obtain the scrollable

result set as follows.

For Statement:

Statement st = con.createStatement(type, concurrency);

For Prepared Statement:

PreparedStatement pst = con.preparedStatement(cmd, type,

concurrency)

The possible values of the type and concurrency are as follows.

For type:

TYPE_FORWARD_ONLY: Resultset is not scrollable (Default).

TYPE_SCROLL_INSENSITIVE: Resultset is scrollable but not

sensitive to database changes.

TYPE_SCROLL_SENSITIVE: Resultset is scrollable and

sensitive to database changes.

For concurrency:

CONCUR_READ_ONLY: Resultset can not be used to update

the database. (Default).

CONCUR_UPDATABLE: Resultset can be used to update the

database.

Result can be scrolled using following method.

previous(): It is used to scroll backward. Returns true if success.

 Prof.P.Y.Hole

next(): It is used to scroll forward. Returns true if success.

relative(int n): It moves cursor n records either forward or

backward.If n is positive, it moves forward.If n is negative, it

moves backward.If n is zero, it has no effect.

absolute(int n): It moves the cursor to specific row number i.e. n.

getRow(): It returns the current row number where cursor is

located.

Updatable ResultSet:

It allows user to update the entries through programming

automatically.This type of Resultset is not scrollable.

But usually user want scrollable Resultset while editing or

updating.

We can obtain the updatable Resultset as follows:

Statement st = con.createStatement(

ResultSet.TYPE_SCROLL_INSESNSITIVE,

ResultSet.CONCUR_UPDATABLE);

e.g.

String qry = “select * from Books”;

ResultSet rs = st.executeQuery(qry);

while(rs.next())

{

double prc = rs.getDouble(“Price”);

rs.updateDouble(“Price”, prc + 300);

rs.updateRow();

}

 Prof.P.Y.Hole

There are several methods are used to update row value for specific

column.

updateXXX(int col_number):

updateXXX(String col_name):

It changes the only row value for specific column.

where

XXX :- specify Int, Double, String, Date, etc.

updateRow(): It sends all updates in the current row to database.

