
Python Objects and Classes

In the last tutorial, we learned about Python OOP. We know that python

also supports the concept of objects and classes.

An object is simply a collection of data (variables) and methods (functions).

Similarly, a class is a blueprint for that object.

Before we learn about objects, let's first know about classes in Python.

Python Classes

A class is considered as a blueprint of objects. We can think of the class as

a sketch (prototype) of a house. It contains all the details about the floors,

doors, windows, etc. Based on these descriptions we build the house.

House is the object.

Since many houses can be made from the same description, we can create

many objects from a class.

Define Python Class

We use the class keyword to create a class in Python. For example,

class ClassName:

 # class definition

Here, we have created a class named ClassName.

Let's see an example,

class Bike:

 name = ""

 gear = 0

Here,

 Bike - the name of the class

https://www.programiz.com/python-programming/object-oriented-programming

 name/gear - variables inside the class with default

values "" and 0 respectively.

Note: The variables inside a class are called attributes.

Python Objects

An object is called an instance of a class. For example, suppose Bike is a

class then we can create objects like bike1, bike2, etc from the class.

Here's the syntax to create an object.

objectName = ClassName()

Let's see an example,

create class

class Bike:

 name = ""

 gear = 0

create objects of class

bike1 = Bike()

Here, bike1 is the object of the class. Now, we can use this object to access

the class attributes.

Access Class Attributes Using Objects

We use the . notation to access the attributes of a class. For example,

modify the name attribute

bike1.name = "Mountain Bike"

access the gear attribute

bike1.gear

Here, we have used bike1.name and bike1.gear to change and access the

value of name and gear attribute respectively.

Example 1: Python Class and Objects

define a class

class Bike:

 name = ""

 gear = 0

create object of class

bike1 = Bike()

access attributes and assign new values

bike1.gear = 11

bike1.name = "Mountain Bike"

print(f"Name: {bike1.name}, Gears: {bike1.gear} ")

Output

Name: Mountain Bike, Gears: 11

In the above example, we have defined the class named Bike with two

attributes: name and gear.

We have also created an object bike1 of the class Bike.

Finally, we have accessed and modified the attributes of an object using

the . notation.

Create Multiple Objects of Python Class

We can also create multiple objects from a single class. For example,

define a class

class Employee:

 # define an attribute

 employee_id = 0

create two objects of the Employee class

employee1 = Employee()

employee2 = Employee()

access attributes using employee1

employee1.employeeID = 1001

print(f"Employee ID: {employee1.employeeID}")

access attributes using employee2

employee2.employeeID = 1002

print(f"Employee ID: {employee2.employeeID}")
Run Code

Output

Employee ID: 1001

Employee ID: 1002

In the above example, we have created two

objects employee1 and employee2 of the Employee class.

Python Methods

We can also define a function inside a Python class. A Python

Function defined inside a class is called a method.

Let's see an example,

create a class

class Room:

 length = 0.0

 breadth = 0.0

 # method to calculate area

https://www.programiz.com/python-programming/online-compiler
https://www.programiz.com/python-programming/function
https://www.programiz.com/python-programming/function

 def calculate_area(self):

 print("Area of Room =", self.length * self.breadth)

create object of Room class

study_room = Room()

assign values to all the attributes

study_room.length = 42.5

study_room.breadth = 30.8

access method inside class

study_room.calculate_area()
Run Code

Output

Area of Room = 1309.0

In the above example, we have created a class named Room with:

 Attributes: length and breadth

 Method: calculate_area()

Here, we have created an object named study_room from the Room class. We

then used the object to assign values to attributes: length and breadth.

Notice that we have also used the object to call the method inside the

class,

study_room.calculate_area()

Here, we have used the . notation to call the method. Finally, the

statement inside the method is executed.

Python Constructors

Earlier we assigned a default value to a class attribute,

class Bike:

https://www.programiz.com/python-programming/online-compiler

 name = ""

...

create object

bike1 = Bike()

However, we can also initialize values using the constructors. For example,

class Bike:

 # constructor function

 def __init__(self, name = ""):

 self.name = name

bike1 = Bike()

Here, __init__() is the constructor function that is called whenever a new

object of that class is instantiated.

The constructor above initializes the value of the name attribute. We have

used the self.name to refer to the name attribute of the bike1 object.

If we use a constructor to initialize values inside a class, we need to pass

the corresponding value during the object creation of the class.

bike1 = Bike("Mountain Bike")

Here, "Mountain Bike" is passed to the name parameter of __init__().

Python Inheritance

Like any other OOP languages, Python also supports the concept of class

inheritance.

Inheritance allows us to create a new class from an existing class.

The new class that is created is known as subclass (child or derived class)

and the existing class from which the child class is derived is known

as superclass (parent or base class).

Python Inheritance Syntax

Here's the syntax of the inheritance in Python,

define a superclass

class super_class:

 # attributes and method definition

inheritance

class sub_class(super_class):

 # attributes and method of super_class

 # attributes and method of sub_class

Here, we are inheriting the sub_class class from the super_class class.

Example 1: Python Inheritance

class Animal:

 # attribute and method of the parent class

 name = ""

 def eat(self):

 print("I can eat")

inherit from Animal

class Dog(Animal):

 # new method in subclass

 def display(self):

 # access name attribute of superclass using self

 print("My name is ", self.name)

create an object of the subclass

labrador = Dog()

access superclass attribute and method

labrador.name = "Rohu"

labrador.eat()

call subclass method

labrador.display()
Run Code

Output

I can eat

My name is Rohu

In the above example, we have derived a subclass Dog from a

superclass Animal. Notice the statements,

labrador.name = "Rohu"

labrador.eat()

Here, we are using labrador (object of Dog) to access name and eat() of

the Animal class. This is possible because the subclass inherits all attributes

and methods of the superclass.

Also, we have accessed the name attribute inside the method of

the Dog class using self.

is-a relationship

In Python, inheritance is an is-a relationship. That is, we use inheritance

only if there exists an is-a relationship between two classes. For example,

1. Car is a Vehicle

https://www.programiz.com/python-programming/online-compiler

2. Apple is a Fruit

3. Cat is an Animal

Here, Car can inherit from Vehicle, Apple can inherit from Fruit, and so

on.

Example 2: Inheritance in Python

Let's take a look at another example of inheritance in Python,

A polygon is a closed figure with 3 or more sides. Say, we have a class

called Polygon defined as follows,

class Polygon:

 def __init__(self, no_of_sides):

 self.n = no_of_sides

 self.sides = [0 for i in range(no_of_sides)]

 def inputSides(self):

 self.sides = [float(input("Enter side "+str(i+1)+" : ")) for i in

range(self.n)]

 def dispSides(self):

 for i in range(self.n):

 print("Side",i+1,"is",self.sides[i])

This class has data attributes to store the number of sides n and magnitude

of each side as a list called sides.

 The inputSides() method takes in the magnitude of each side

 The dispSides() method displays these side lengths

A triangle is a polygon with 3 sides. So, we can create a class

called Triangle which inherits from Polygon. This makes all the attributes

of Polygon class available to the Triangle class.

We don't need to define them again (code reusability). Triangle can be

defined as follows.

class Triangle(Polygon):

 def __init__(self):

 Polygon.__init__(self,3)

 def findArea(self):

 a, b, c = self.sides

 # calculate the semi-perimeter

 s = (a + b + c) / 2

 area = (s*(s-a)*(s-b)*(s-c)) ** 0.5

 print('The area of the triangle is %0.2f' %area)

However, the Triangle class has a new method findArea() to find and print

the area of the triangle.

Now let's see the complete working code of the example above including

creating an object,

class Polygon:

 # Initializing the number of sides

 def __init__(self, no_of_sides):

 self.n = no_of_sides

 self.sides = [0 for i in range(no_of_sides)]

 def inputSides(self):

 self.sides = [float(input("Enter side "+str(i+1)+" : ")) for i in

range(self.n)]

 # method to display the length of each side of the polygon

 def dispSides(self):

 for i in range(self.n):

 print("Side",i+1,"is",self.sides[i])

class Triangle(Polygon):

 # Initializing the number of sides of the triangle to 3 by

 # calling the __init__ method of the Polygon class

 def __init__(self):

 Polygon.__init__(self,3)

 def findArea(self):

 a, b, c = self.sides

 # calculate the semi-perimeter

 s = (a + b + c) / 2

 # Using Heron's formula to calculate the area of the triangle

 area = (s*(s-a)*(s-b)*(s-c)) ** 0.5

 print('The area of the triangle is %0.2f' %area)

Creating an instance of the Triangle class

t = Triangle()

Prompting the user to enter the sides of the triangle

t.inputSides()

Displaying the sides of the triangle

t.dispSides()

Calculating and printing the area of the triangle

t.findArea()
Run Code

Output

Enter side 1 : 3

Enter side 2 : 5

Enter side 3 : 4

Side 1 is 3.0

Side 2 is 5.0

Side 3 is 4.0

The area of the triangle is 6.00

Here, we can see that even though we did not define methods

like inputSides() or dispSides() for class Triangle separately, we were able

to use them.

If an attribute is not found in the class itself, the search continues to the

base class. This repeats recursively, if the base class is itself derived from

other classes.

https://www.programiz.com/python-programming/online-compiler

Method Overriding in Python Inheritance

In the previous example, we see the object of the subclass can access the

method of the superclass.

However, what if the same method is present in both the superclass

and subclass?

In this case, the method in the subclass overrides the method in the

superclass. This concept is known as method overriding in Python.

Example: Method Overriding

class Animal:

 # attributes and method of the parent class

 name = ""

 def eat(self):

 print("I can eat")

inherit from Animal

class Dog(Animal):

 # override eat() method

 def eat(self):

 print("I like to eat bones")

create an object of the subclass

labrador = Dog()

call the eat() method on the labrador object

labrador.eat()
Run Code

Output

I like to eat bones

In the above example, the same method eat() is present in both

the Dog class and the Animal class.

https://www.programiz.com/python-programming/online-compiler

Now, when we call the eat() method using the object of the Dog subclass,

the method of the Dog class is called.

This is because the eat() method of the Dog subclass overrides the same

method of the Animal superclass.

The super() Method in Python Inheritance

Previously we saw that the same method in the subclass overrides the

method in the superclass.

However, if we need to access the superclass method from the subclass,

we use the super() method. For example,

class Animal:

 name = ""

 def eat(self):

 print("I can eat")

inherit from Animal

class Dog(Animal):

 # override eat() method

 def eat(self):

 # call the eat() method of the superclass using super()

 super().eat()

 print("I like to eat bones")

create an object of the subclass

labrador = Dog()

labrador.eat()
Run Code

Output

https://www.programiz.com/python-programming/online-compiler

I can eat

I like to eat bones

In the above example, the eat() method of the Dog subclass overrides the

same method of the Animal superclass.

Inside the Dog class, we have used

call method of superclass

super().eat()

to call the eat() method of the Animal superclass from the Dog subclass.

So, when we call the eat() method using the labrador object

call the eat() method

labrador.eat()

Both the overridden and the superclass version of the eat() method is

executed.

Uses of Inheritance

1. Since a child class can inherit all the functionalities of the parent's class,

this allows code reusability.

2. Once a functionality is developed, you can simply inherit it. No need to

reinvent the wheel. This allows for cleaner code and easier to maintain.

3. Since you can also add your own functionalities in the child class, you can

inherit only the useful functionalities and define other required features.

Python Multiple Inheritance

A class can be derived from more than one superclass in Python. This is

called multiple inheritance.

For example, A class Bat is derived from

superclasses Mammal and WingedAnimal. It makes sense because bat is a

mammal as well as a winged animal.

Multiple Inheritance

Python Multiple Inheritance Syntax

class SuperClass1:

 # features of SuperClass1

class SuperClass2:

 # features of SuperClass2

class MultiDerived(SuperClass1, SuperClass2):

 # features of SuperClass1 + SuperClass2 + MultiDerived class

Here, the MultiDerived class is derived

from SuperClass1 and SuperClass2 classes.

https://www.programiz.com/python-programming/class
https://www.programiz.com/python-programming/inheritance

Example: Python Multiple Inheritance

class Mammal:

 def mammal_info(self):

 print("Mammals can give direct birth.")

class WingedAnimal:

 def winged_animal_info(self):

 print("Winged animals can flap.")

class Bat(Mammal, WingedAnimal):

 pass

create an object of Bat class

b1 = Bat()

b1.mammal_info()

b1.winged_animal_info()
Run Code

Output

Mammals can give direct birth.

Winged animals can flap.

In the above example, the Bat class is derived from two super

classes: Mammal and WingedAnimal. Notice the statements,

b1 = Bat()

b1.mammal_info()

b1.winged_animal_info()

Here, we are using b1 (object of Bat) to

access mammal_info() and winged_animal_info() methods of the Mammal and

the WingedAnimal class respectively.

https://www.programiz.com/python-programming/online-compiler

Python Multilevel Inheritance

In Python, not only can we derive a class from the superclass but you can

also derive a class from the derived class. This form of inheritance is

known as multilevel inheritance.

Here's the syntax of the multilevel inheritance,

class SuperClass:

 # Super class code here

class DerivedClass1(SuperClass):

 # Derived class 1 code here

class DerivedClass2(DerivedClass1):

 # Derived class 2 code here

Here, the DerivedClass1 class is derived from the SuperClass class, and

the DerivedClass2 class is derived from the DerivedClass1 class.

Multilevel Inheritance in Python

Example: Python Multilevel Inheritance

class SuperClass:

 def super_method(self):

 print("Super Class method called")

define class that derive from SuperClass

class DerivedClass1(SuperClass):

 def derived1_method(self):

 print("Derived class 1 method called")

define class that derive from DerivedClass1

class DerivedClass2(DerivedClass1):

 def derived2_method(self):

 print("Derived class 2 method called")

create an object of DerivedClass2

d2 = DerivedClass2()

d2.super_method() # Output: "Super Class method called"

d2.derived1_method() # Output: "Derived class 1 method called"

d2.derived2_method() # Output: "Derived class 2 method called"
Run Code

Output

Super Class method called

Derived class 1 method called

Derived class 2 method called

In the above example, DerivedClass2 is derived from DerivedClass1, which is

derived from SuperClass.

It means that DerivedClass2 inherits all the attributes and methods of

both DerivedClass1 and SuperClass.

Hence, we are using d2 (object of DerivedClass2) to call methods

from SuperClass, DerivedClass1, and DerivedClass2.

Python Operator Overloading

In Python, we can change the way operators work for user-defined types.

For example, the + operator will perform arithmetic addition on two

numbers, merge two lists, or concatenate two strings.

This feature in Python that allows the same operator to have different

meaning according to the context is called operator overloading.

https://www.programiz.com/python-programming/online-compiler
https://www.programiz.com/python-programming/operators

Python Special Functions

Class functions that begin with double underscore __ are called special

functions in Python.

The special functions are defined by the Python interpreter and used to

implement certain features or behaviors.

They are called "double underscore" functions because they have a

double underscore prefix and suffix, such as __init__() or __add__().

Here are some of the special functions available in Python,

Function Description

__init__() initialize the attributes of the object

__str__() returns a string representation of the object

__len__() returns the length of the object

__add__() adds two objects

__call__() call objects of the class like a normal function

Example: + Operator Overloading in Python

To overload the + operator, we will need to implement __add__() function in

the class.

With great power comes great responsibility. We can do whatever we like

inside this function. But it is more sensible to return the Point object of the

coordinate sum.

Let's see an example,

class Point:

 def __init__(self, x=0, y=0):

 self.x = x

 self.y = y

 def __str__(self):

 return "({0},{1})".format(self.x, self.y)

 def __add__(self, other):

 x = self.x + other.x

 y = self.y + other.y

 return Point(x, y)

p1 = Point(1, 2)

p2 = Point(2, 3)

print(p1+p2)

Output: (3,5)
Run Code

In the above example, what actually happens is that, when we use p1 + p2,

Python calls p1.__add__(p2) which in turn is Point.__add__(p1,p2). After this,

the addition operation is carried out the way we specified.

Similarly, we can overload other operators as well. The special function that

we need to implement is tabulated below.

Operator Expression Internally

Addition p1 + p2 p1.__add__(p2)

Subtraction p1 - p2 p1.__sub__(p2)

https://www.programiz.com/python-programming/online-compiler

Multiplication p1 * p2 p1.__mul__(p2)

Power p1 ** p2 p1.__pow__(p2)

Division p1 / p2 p1.__truediv__(p2)

Floor Division p1 // p2 p1.__floordiv__(p2)

Remainder (modulo) p1 % p2 p1.__mod__(p2)

Bitwise Left Shift p1 << p2 p1.__lshift__(p2)

Bitwise Right Shift p1 >> p2 p1.__rshift__(p2)

Bitwise AND p1 & p2 p1.__and__(p2)

Bitwise OR p1 | p2 p1.__or__(p2)

Bitwise XOR p1 ^ p2 p1.__xor__(p2)

Bitwise NOT ~p1 p1.__invert__()

Overloading Comparison Operators

Python does not limit operator overloading to arithmetic operators only. We

can overload comparison operators as well.

Here's an example of how we can overload the < operator to compare two

objects the Person class based on their age:

class Person:

 def __init__(self, name, age):

 self.name = name

 self.age = age

 # overload < operator

 def __lt__(self, other):

 return self.age < other.age

p1 = Person("Alice", 20)

p2 = Person("Bob", 30)

print(p1 < p2) # prints True

print(p2 < p1) # prints False
Run Code

Output

True

False

Here, __lt__() overloads the < operator to compare the age attribute of two

objects.

The __lt__() method returns,

 True - if the first object's age is less than the second object's age

 False - if the first object's age is greater than the second object's age

Similarly, the special functions that we need to implement, to overload

other comparison operators are tabulated below.

Operator Expression Internally

Less than p1 < p2 p1.__lt__(p2)

Less than or equal to p1 <= p2 p1.__le__(p2)

Equal to p1 == p2 p1.__eq__(p2)

https://www.programiz.com/python-programming/online-compiler

Not equal to p1 != p2 p1.__ne__(p2)

Greater than p1 > p2 p1.__gt__(p2)

Greater than or equal to p1 >= p2 p1.__ge__(p2)

Advantages of Operator Overloading

Here are some advantages of operator overloading,

 Improves code readability by allowing the use of familiar operators.

 Ensures that objects of a class behave consistently with built-in types and

other user-defined types.

 Makes it simpler to write code, especially for complex data types.

 Allows for code reuse by implementing one operator method and using it

for other operators.

	Python Objects and Classes
	Python Classes
	Define Python Class
	Python Objects
	Access Class Attributes Using Objects
	Example 1: Python Class and Objects
	Create Multiple Objects of Python Class
	Python Methods
	Python Constructors

	Python Inheritance
	Python Inheritance Syntax
	Example 1: Python Inheritance
	is-a relationship
	Example 2: Inheritance in Python

	Method Overriding in Python Inheritance
	Example: Method Overriding

	The super() Method in Python Inheritance
	Uses of Inheritance

	Python Multiple Inheritance
	Python Multiple Inheritance Syntax
	Example: Python Multiple Inheritance
	Python Multilevel Inheritance
	Example: Python Multilevel Inheritance

	Python Operator Overloading
	Python Special Functions
	Example: + Operator Overloading in Python
	Overloading Comparison Operators
	Advantages of Operator Overloading

