

Prof. Ashvini swapnil Tanpure

Department of BBA(CA)

Hutatma Rajguru Mahavidyalay, Rajgurunagar

FY BBA-CA (Semester I) – C Programming

C Programming Structures

A.S.Tanpure

Alphabets in C:

Alphabets

A, B, ….., Y, Z

 a, b, ……, y, z

Digits 0, 1, 2, 3, 4, 5, 6, 7, 8, 9

Special Symbols + - * / = % & #

 ! ? ^ “ „ ~ \ |

 < > () [] { }

A.S.Tanpure

C – Character Set:

Character Set:

In C, the characters are grouped in to

Letters, Digits, Special Characters, and While Spaces

Tokens:

The smallest individual units are known as tokens.

C program is written using these tokens.

Keywords:

The words that are having special predefined meaning to the
compiler, that can not be changed.

Keywords are basic building blocks of C program.

It must be written in small case letters only.

32 keywords are available in C.

C – Character Set:

Identifiers:

It is the name given to variables, functions, and arrays.

Both uppercase and lower case letter are permitted, But lowercase
letters are used commonly.

No other special character is allowed in Identifier, except
underscore.

Underscore used to link two words in long identifiers.

Constants: In C, constants refer to fix value, that can not be
change during the execution of the program.

Constants:

Integer: Sequence of digits.

Types: Decimal (0-9) => 124, 5264, -5478

Octal (0-7), => 037, 0551, 0456

Hexadecimal (0-10 & A-F). => 0x2, 0x9F, 0x2D

Real: The sequence of digits with decimal points.

The numbers can be used to represent distance, height, prices.

0.0083

-0.75

425.36

7500000000 => 7.5E9

-0.000000368 => -3.68E-7

Character:

Single Character Constant: It contains single character enclosed in pair

of single quote.

e.g.

„S‟, „p‟, „6‟

String Constant: Sequence of characters enclosed in pair of double

quote.

e.g.

“Hello”, “Computer”, “1972”, “X”

Back slash characters / Escape Sequences :

These characters are used in output function to perform special function.

Characters Meaning

„\a‟ Audible alert (bell)

„\b‟ Back space

„\n‟ new line feed

„\r‟ Carriage return

„\t‟ Horizontal tab

„\v‟ Vertical tab

„\‟‟ Single Quote

„\”‟ Double quote

„\\‟ Back slash

„\0‟ null character

Variables in C:

Variable is a name given to a memory location where we can store

different values of same type during the program execution.

Every variable must be declared in the declaration section before it is

used.

Every variable must have a type that determines the range and type of

values to be stored and size of the memory to be allocated.

Variable name may contains letters, digits, and underscore (_).

SRules for naming Variable:

1) Must start with letter and not with digit.

2) Should not contain any keywords defined in C.

3) Should not contain any special character defined in C except

underscore (_).

4) White Space is not allowed in variable name.

5) Recognize length is 31 characters, but first 8 characters are used by

many compilers.

Variables in C:

Declaration:

It tells to the compiler to allocate required amount of memory with

specified variable name and allows only specified type values into that

memory location.

Declaration can be performed either before the function as global

variables or inside any block or function.

But it must be at the beginning of block or function.

Syntax:

data_type variable_name;

e.g.

int number;

Variables in C:

Definition:

It tells the compiler the initialization of variable declared earlier.

We can assign any initial value to the variable declared earlier as per

the type of variable.

This initial value can be changed during execution of the program.

Example:

int number;

number=10;

We can do declaration and definition/initialization in one step as follows.

int number = 10;

Data Types:

C language has rich set of data types. It is used to represent storage type of

data. The variety of data types available, can be used as per the need of

an application / program.

Data types are used to specify what kind of value can be stored in a

variable.

The memory size and type of value of a variable are determined by

variable data type.

1) Primitive Data Types.

2) Derived Data Types.

3) User Defined Data Types.

Data Types:

1) Primitive Data Types:

These data types are already defined in the system. All the compilers

support these primitive data types. It is also called as built in data type.

There are 4 types of primitive data types:

1. Integer (int)

2. Floating Point (float)

3. Double precision floating point (double)

4. Character (char)

Data Types:

1. Integer (int):

Integers are whole number with range of values specified by a

compilers.

We used keyword int to specify the integer data type.

The integer data type is used with different type modifiers like

short, long, signed and unsigned.

The following table provides complete details about integer data type:

Type Size Range format Specifier

int 2 Byte -32768 to 32767 %d

short int 2 Byte -32768 to 32767 %d

long int 4 Byte -2,147,483,648 to %d

 2,147,483,647

unsigned int 2 Byte 0 to 65325 %u

unsigned long int 4 Byte 0 to 4,294,967,295 %u

Data Types:

2. Floating Point (float):

It is set of numbers with decimal point value. It has two variants.

Float, and Double.

Float: It uses 32 bits (4Bytes) with 6 digits of precision to store floating

point value.

Keyword float is used to defined float type of variable.

Double: It uses 64 bits (8Bytes) with 12 digits of precision to store

floating point value.

Keyword double is used to defined double type of variable.

Type Size Range format Specifier

float 4 Byte 1.2E-38 to 3.4 E+38 %f

double 8 Byte 2.3E-308 to 1.7E+308 %ld

long double 10 Byte 3.4 E-4932 to 1.1E+4932 %ld

Data Types:

4. Character (char):

A single character can be defined as character type data.

A character can be stored in single quote.

Keyword char is used to defined character type variable.

Character type can be either signed or unsigned.

Type Size Range Format Specifier

char 1 Byte -128 to 127 %c

unsigned char 1 Byte 0 to 255 %c

Derived Data Types:

It is user defined data types or secondary data types.

The derived data types are created using following concepts.

1. Array

2. Structure

3. Union

4. Enumeration

User Defined Data Types:

Typedef:

C language supports feature type definition, which allows us to define

an identifier that can be used as existing data types.

Syntax:

Where,

typedef type identifier;

typedef is keyword,

type is an existing data type,

identifier is an new name given to existing data type.

e.g.

typedef int marks;

Now marks can be used to define new identifier name to int.

marks sub1, sub2, sub3;

User Defined Data Types:

Enumeration:

Enumeration (or enum) is a user defined data type in C.

It is mainly used to assign names to integral constants, the names make

a program easy to read and maintain.

The keyword „enum‟ is used to declare new enumeration types in C.

e.g.

enum State {Working = 1, Failed = 0};

Variables of type enum can also be defined. They can be defined in

two ways:

enum week{Mon, Tue, Wed}; enum day;

Or

enum week{Mon, Tue, Wed}day

User Defined Data Types:

Enumeration:

#include<stdio.h>

enum year{Jan, Feb, Mar, Apr, May, Jun, Jul, Aug, Sep, Oct, Nov, Dec};

int main()

{

int i;

for (i=Jan; i<=Dec; i++)

printf("%d ", i);

return 0;

}

O/P:

0 1 2 3 4 5 6 7 8 9 10 11

Operators & Expressions:

An operator is a symbol used to perform mathematical and logical

operations in a program.

An operator is a special symbol that tells to the compiler to perform

mathematical or logical operations.

Arithmetic:

The arithmetic operators are the symbols that are used to perform basic

mathematical operations like addition, subtraction, multiplication,

division and percentage modulo.

Addition (+) : 10 + 5 = 15

Subtraction (-): 10 – 5 = 5

Multiplication(*): 10 * 5 = 50

Division (/): 10 / 5 = 2

Remainder(%): 10 % 5 = 0

Operators & Expressions:

Relational:

The relational operators are the symbols that are used to compare two

values.

Every relational operator has two results TRUE or FALSE.

Less than (<): 10 < 5 is false

Greater than (>): 10 > 5 is true

Less than or equal to (<=): 10 <= 5 is false

Greater than or equal to(>=): 10 >= 5 is true

Equal to (= =): 10 = = 5 is false

Not equal to (!=): 10 != 5 is true

Operators & Expressions:

Logical:

The logical operators are the symbols that are used to combine

multiple conditions into one condition.

Logical And (&&): 10 < 5 && 15 > 10 is false

Logical OR (| |): 10 < 5 || 15 > 10 is true

Logical Not(~): !(10 < 5 && 15 > 10) is true

Operators & Expressions:

Conditional:

The conditional operator is also called as ternary operator because it

requires three operands.

This operator is used for decision making. In this operator, first we

verify a condition, then we perform one operation out of the two

operations based on the condition result.

If the condition is TRUE the first option is performed, if the condition

is FALSE the second option is performed.

Syntax:

Condition ? TRUE Part : FALSE Part ;

e.g.

A = (10<15) ? 100 : 200 ;

A has value 100

Operators & Expressions:

Assignment:

The assignment operators are used to assign right hand side value

(Rvalue) to the left hand side variable (Lvalue).

The assignment operator is used in different variants along with

arithmetic operators.

Operators

=

Example

X=10

Meaning

+= X+=10 X=X+10

-= X-+10 X=X-10

= X=10 X=X*10

/= X/=10 X=X/10

%= X%=10 X=X%10

Operators & Expressions:

Bitwise:

The bitwise operators are used to perform bit level operations in C

programming language.

When we use the bitwise operators, the operations are performed based

on the binary values.

Let us consider two variable A=25 (11001) and B=20 (10100)

Operator Example Meaning

& (Bitwise AND) A & B 10000 (16)

| (Bitwise OR) A | B 11101 (29)

^ (Bitwise XOR) A ̂ B 01101(13)

~ (Bitwise NOT) ~A 00110 (6)

<< (Left Shift) A << 2 1100100 (100)

>> (Right Shift) A >> 2 00110 (2)

Operators & Expressions:

Increment & Decrement Operator:

The increment operators adds one to the existing value of the operand

and the decrement operator subtracts one from the existing value of the

operand.

The increment and decrement operators are called as unary operators

because, both needs only one operand.

Assume X=10;

Operator Example Meaning

Increment (++) Y=X++

Y=++X

X=11 & Y=10

X=11 & Y=11

Decrement (--) Y=X--

Y=--X

X=9 & Y=10

X=9 & Y=9

Operator Precedance & Associativity:

Precedence:

Operator precedence determines which operator is performed first in

an expression with more than one operators with different precedence.

Associativity :

Operator associativity is used to determine the order of operators with

equal precedence evaluated in an expression.

Associativity can be either Left to Right or Right to Left.

e.g.

10 + 20 * 30 is calculated as 10 + (20 * 30) and not as (10 + 20) * 30.

Operator Precedance & Associativity:

Associativity is only used when there are two or more operators of same

precedence.

e.g.

The expression “100 / 10 * 10” is treated as “(100 / 10) * 10”.

All operators with same precedence have same associativity.

e.g.

+ and – have same associativity.

Precedence and associativity of postfix ++ and prefix ++ are different.

e.g.

Precedence of postfix ++ is more than prefix ++

Associativity of postfix ++ is left to right and associativity of prefix ++

Operator Precedance & Associativity:

Comma has the least precedence among all operators and should be used

carefully.

e.g.

int a;

a = 1, 2, 3; // Evaluated as (a = 1), 2, 3

There is no chaining of comparison operators in C.

e.g.

int a = 10, b = 20, c = 30;

(c > b > a) is not treated as 30 > 20 > 10

(c > b > a) is treated as ((c > b) > a),

associativity of '>' is left to right.

Therefore the value becomes ((30 > 20) > 10)

which becomes (1 > 20)

Operator Precedance & Associativity:

Category Operator Associativity

Postfix () [] -> . ++ - - Left to right

Unary + - ! ~ ++ - - (type)* & sizeof Right to left

Multiplicative * / % Left to right

Additive + - Left to right

Shift << >> Left to right

Relational < <= > >= Left to right

Equality == != Left to right

Bitwise AND & Left to right

Bitwise XOR ̂ Left to right

Bitwise OR | Left to right

Logical AND && Left to right

Logical OR || Left to right

Conditional ?: Right to left

Assignment = += -= *= /= %=>>= <<= &= ^=

|=

Right to left

Comma , Left to right

Expression:

Arithmetic Expression: It is combination of variables, constants, operators

arranged as per the syntax of the language.

Syntax:

variable = expression;

Example:

a * b – c => a X b - c

 (m+n) * (x+y) => (m+n)(x+y)

 a * b / c

3*x*x + 2*x +1

=>

=>

ab/c

3x2+2x+1

 x/y + c => x/y+c

Expression:

Example:

x = a-b/3+c*2-1;

Where, a=9, b=12, c=3, find x.

x = 9 – 12 / 3 + 3 * 2 – 1

x = 9 – 4 + 6 – 1

x = 5 + 6 – 1

x = 11 – 1

x = 10

Type Conversion:

When constants and variables of different types are mixed in an

expression, they are all converted to same type. This procedure is

called as Type Conversion.

Compiler converts all operands to the type of largest operand.

This is also called as type promotion.

There are two ways of Types conversion.

1. Implicit: Compiler converts all lower type operand to the higher

type before the operation.

2. Explicit: Forcefully converting / casting the type of one operand to

other operand to simplify the operation and to get correct

result.

Tye Conversion:

Sequence of rules applied for evaluating an expression:

1. All short and char are automatically converted to int.

2. Always Lower type get converted to Higher Type

i.e. Unsigned Integer => Long Integer => Unsigned Long Integer => Float =>

Double => Long Double

3. If one operand is Unsigned Integer and other is Long Integer then

Unsigned Integer will be converted to Long Integer & result in Long Int

4. If float is converted to Integer, It causes truncation of fraction part.

5. If double converted to float, it causes rounding of digits.

6. If long int converted to int. it causes dropping of the excess higher order bits.

Implicit Tye Conversion:

int i, x; float f, double d; long int l;

x = l / i + i * f – d

 (long) (int) (int) (float) (double)

 (long) (long) (float) (float) (double)

(long) (float)

(float) (float) (double)

(float) (double)

(double) (double)

(int)

(double)

Explicit Tye Conversion:

There are certain instances where, we need to do type conversion forcefully.

i.e. Explicit Type Conversion.

e.g.

total = subjet1 + subject2 + subject3 + subject4;

average = total / 3;

We can do explicit type casting as follows…

average = (float) total / 3;

Syntax:

var = (type) expression;

Explicit Tye Conversion:

Example:

x = (int)7.6; => 7.6 is converted to integer.

a=(int)21.3 / (int)4.5; => Evaluate 21/4, and result is 5.

y = (int) (a+b); => Result of a+b is converted to integer.

z = (int) a+b; => a is converted to integer and added to b.

n = cos((double)x); => x is converted to double then used.

Built in I/O Functions:

For any program 3 operations are important.

1. Input,

2. Process, and

3. Output.

Any programs needs some Input from user, perform some Operation

(Process) on it, and produces the Output.

Input: Can be accepted by user from console (Command Line).

from disk file (Reading File).

Process: Performs some operations on accepted Input.

Output: Can be produced to user to console (Command Line).

to disk file (Writing File).

Built in I/O Functions:

C language provides us two type of I/O operations.

1. Unformatted I/O Operation

2. Formatted I/O Operation

1. Unformatted I/O Operation:

It is simplest form of input / output operation.

We can perform Input and Output operation in the forms of characters

& strings.

We have to use several I/O functions, which are defined in stdio.h

header file.

We need to include stdio.h header file every time we used these

functions.

Reading a Character:

getchar(): This function is used to read a single character from the

console.

Syntax:

var_name = getchar();

where,

var_name is character type variable.

It reads one single character from the console, typed by user and store

that character in variable “var_name”.

e.g.

char ch;

ch = getchar();

Reading a Character:

getc(): This function is used to read a single character from the

console.

Syntax:

var_name = getc(stdin);

where,

var_name is character type variable.

It reads one single character from the console, typed by user and store

that character in variable “var_name”.

e.g.

char ch;

ch = getc();

Reading a Character:

getch(): It reads single character from keyboard. But it does not use

any buffer, so the entered character is immediately

returned without waiting for the enter key.

It is non standard function, written in conio.h header file

Syntax:

var_name = getch();

where,

var_name is character type variable.

It reads one single character from the console, typed by user and store

that character in variable “var_name”.

e.g.

char ch;

ch = getch();

Difference between getchar(), getch(), and getc():

getc() can read from any input stream (standard / file).

getchar() can reads from standard input.

Similar to getch() one more function is available i.e.

getche(): It also a non-standard function present in conio.h.

It reads a single character from the keyboard and displays

immediately on output screen without waiting for enter

key.

Writing a Character:

putchar(): It writes one character at time to the console.

Syntax:

Where,

putchar(ch);

ch is any character type variable.

putc(): It also writes one character at time to the console / standard

output device.

Syntax:

where,

putc(ch,stdout);

ch is any character type variable,

stdout is standard output stream.

Reading a String:

gets(): This function reads string (line of characters) from user

including spaces and tabs.

It is defined in stdio.h header file.

Syntax:

The newline character is read and converted to a null

character (\O) before it is stored in s.

gets(var_name);

E.g.

char name[10];

gets(name);

Reading a String:

puts(): This function is used to print a string back to console.

It is also defined in stdio.h header file.

Syntax:

puts(var_name);

E.g.

puts(name);

Formatted I/O operations:

Formatted I/O means to perform input and output operations in some

specific format.

e.g.

1234 Integer Format.

45.75 Floating Format.

“Amit” String Format.

C provides us two special functions to perform formatted input and

output.

1. printf(): It is used for formatted output.

2. scanf(): It is used for formatted input.

Formatted Input:

scanf() function is used for formatted input operations.

Syntax:

scanf(“control string”, arg1,arg2, arg3);

Where,

control string specifies the field format in which data is to be

entered and stoared.

arg1, arg2, arg3 are the variable where the actual values are

stored.

Field format: It consist of

1. conversion character (format specifier) and optional number that

specifies field width.

2. blanks, new line character, tabs.

Formatted Input:

e.g.

1. scanf(%d %d”, &num1,&num2);

Where,

%d is format specifier used for Integer type data.

&num1 specifies the address space of the variable, where it

stores the value.

2. scanf(“%5d %4d”, &num1, &num2);

Where,

%5d is format specifier used for Integer type and 5 specifies

the filed width used to store the accepted value in the variable.

Format Specifiers:

Character Meaning

%d Reads single decimal value

%c Reads single character value

%f Reads single floating point value

%lf Reads double type of value

%l Reads long value

%o Reads octal representation of integer.

%s Reads a string without bank, new line, tab

%u Reads unsigned integer

%i Reads signed integer

%x Reads hexadecimal representation of integer

Formatted Input:

e.g.

scanf(“%f %f %f”, &x, &y, &z);

scanf(“%s”, &name);

scanf(“%d %c %f %s”, &rno, &grade, &per, &name);

Formatted Output:

printf(): This function is used to do formatted output operation.

We can use this function to print captions, text message,

numerical values as result back to user.

Syntax:

Where,

Syntax:

Where,

printf(“text message”);

text message is any text message that we want to display back

to user.

printf(“control string”,arg1, arg2,arg3);

control string contains:

characters message,

format specification string,

Escape Seequences characters such as \n, \t, \r etc.

Formatted Output:

e.g.

printf(“C – Programming Language”);

printf(“Sum = %d”, sum);

printf(“Welcome to \n C programming”);

printf(“a = %f \n b=%f ”, a, b);

printf(“\n”);

Formatted Output:

e.g.

printf(“%5d %7.4f”, a, b); //a=9876 & b=98.7654

o/p=> _9876 98.7654

printf(“%-7.2f” , a); //a=98.7654 - is used for left Alignment

o/p=> 98.77_ _

printf(“%s”, city); // city=“New Delhi”

o/p=> New Delhi

printf(“%20s”,city); // by default right Alignment

o/p=> _ _ _ _ _ _ _ _ _ _ _ New Delhi

printf(“%-20s”,city); // - specifies left Alignment

o/p=> New Delhi _ _ _ _ _ _ _ _ _ _ _

References:
https://www.javatpoint.com/c-programming-language-tutorial

www.google.com

http://www.btechsmartclass.com/c_programming/C-Datatypes.html

THANK YOU…

Prof.Ashvini S.Tanpure

HRM College,Rajgrunagar

https://www.javatpoint.com/c-programming-language-tutorial
https://www.javatpoint.com/c-programming-language-tutorial
https://www.javatpoint.com/c-programming-language-tutorial
https://www.javatpoint.com/c-programming-language-tutorial
https://www.javatpoint.com/c-programming-language-tutorial
https://www.javatpoint.com/c-programming-language-tutorial
https://www.javatpoint.com/c-programming-language-tutorial
https://www.javatpoint.com/c-programming-language-tutorial
http://www.google.com/
http://www.btechsmartclass.com/c_programming/C-Datatypes.html
http://www.btechsmartclass.com/c_programming/C-Datatypes.html
http://www.btechsmartclass.com/c_programming/C-Datatypes.html
http://www.btechsmartclass.com/c_programming/C-Datatypes.html

	Alphabets in C:
	C – Character Set:
	Constants:
	Character:
	Back slash characters / Escape Sequences :
	Variables in C:
	Variables in C: (1)
	Variables in C: (2)
	Data Types:
	Data Types: (1)
	Data Types: (2)
	Data Types: (3)
	Data Types: (4)
	Derived Data Types:
	User Defined Data Types:
	User Defined Data Types: (1)
	User Defined Data Types: (2)
	Operators & Expressions:
	Operators & Expressions: (1)
	Operators & Expressions: (2)
	Operators & Expressions: (3)
	Operators & Expressions: (4)
	Operators & Expressions: (5)
	Operators & Expressions: (6)
	Operator Precedance & Associativity:
	Operator Precedance & Associativity: (1)
	Operator Precedance & Associativity: (2)
	Expression:
	Expression: (1)
	Type Conversion:
	Tye Conversion:
	Implicit Tye Conversion:
	Explicit Tye Conversion:
	Explicit Tye Conversion: (1)
	Built in I/O Functions:
	Built in I/O Functions: (1)
	Reading a Character:
	Reading a Character: (1)
	Reading a Character: (2)
	Difference between getchar(), getch(), and getc():
	Writing a Character:
	Reading a String:
	Reading a String: (1)
	Formatted I/O operations:
	Formatted Input:
	Formatted Input: (1)
	Format Specifiers:
	Formatted Input: (2)
	Formatted Output:
	Formatted Output: (1)
	Formatted Output: (2)

