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Unit 3: Real Numbers 

 In ancient India, the concept of real numbers was intertwined with the development of 

mathematics and astronomy. The Sulba Sutras (circa 800 – 500 BCE) contained early references 

to irrational numbers in the context of geometric constructions. Indian mathematicians like 

Aryabhata (476 – 550 CE) and Brahmagupta (598 – 668 CE) made significant contributions, 

including rules for arithmetic operations with zero and negative numbers.   

 Notion of sets:  

ℕ = Set of all natural numbers (Positive Integers) = {1, 2, 3, 4, 5, … }  

𝐖 = Set of all whole numbers = {0, 1, 2, 3, 4, 5, … } 

ℤ = Set of all Integers = {… , −3, −2, −1, 0, 1, 2, 3, 4, … }  

ℚ = Set of all Rational numbers = {
𝑝

𝑞
/ 𝑝, 𝑞 ∈ ℤ, 𝑞 ≠ 0}  

ℝ = Set of all Real numbers =  ℚ ⋃ ℚ𝑐;  

 Where, ℚ𝑐 is set of Irrational numbers are numbers. The real numbers which cannot be 

expressed as a simple fraction of two integers. 

ℂ = Set of Complex numbers ={𝑎 + 𝑖𝑏 /𝑎, 𝑏 ∈ ℝ, 𝑖 = √−1}.    

 The first known use of the notion of 𝑖 (the imaginary unit) was by the Italian 

mathematician Rafael Bombelli in his work "L'Algebra" published in 1572. He used iii to 

handle the square roots of negative numbers while solving cubic equations, despite the broader 

mathematical community initially being skeptical of imaginary numbers.  

 

 Real Numbers in day – to – day life: 

Studying real numbers is fundamental because they form the basis for most 

mathematical concepts and are essential for understanding and solving real-world problems. 

Real numbers allow us to measure, quantify, and analyze continuous quantities, making them 

crucial for fields such as science, engineering, finance, and everyday decision-making. Mastery 

of real numbers enables precise communication, critical thinking, and problem-solving skills 

that are applicable in various academic disciplines and practical situations. 
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 Algebraic properties of Real numbers or Field axioms:  

            Two binary operations '+' and '•', called addition and multiplication respectively 

satisfy the following axioms-  

1. For 𝑎, 𝑏 ∈ ℝ, 𝑎 + 𝑏 ∈ ℝ.                    Closure ness of '+'.  

2. For 𝑎, 𝑏 ∈ ℝ, 𝑎 + 𝑏 = 𝑏 + 𝑎             Commutativity of '+'.  

3. For 𝑎, 𝑏, 𝑐 ∈ ℝ, (𝑎 + 𝑏) + 𝑐 = 𝑎 + (𝑏 + 𝑐)  Associativity of '+'.  

4. For 𝑎 ∈ ℝ there is a number 0 ∈ ℝ 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡  

 𝑎 + 0 = 0 + 𝑎 = 𝑎       Existence of additive identity. 

5. For every 𝑎 ∈ ℝ there is a number −𝑎 ∈ ℝ 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡   𝑎 + (−𝑎) = (−𝑎) + 𝑎 = 0                                    

                                                                    Existence of negative element /Additive    inverse.  

6. For 𝑎, 𝑏 ∈ ℝ, 𝑎 • 𝑏 ∈ ℝ.                   Closureness of '•'  

7. For 𝑎, 𝑏 ∈ ℝ, 𝑎 • 𝑏 = 𝑏 • 𝑎              Commutativity of '•'  

8. For 𝑎, 𝑏, 𝑐 ∈ ℝ, (𝑎 • 𝑏) • 𝑐 = 𝑎 • (𝑏 • 𝑐)     Associativity of '•'  

9. For 𝑎 ∈ ℝ there is a number 1 ∈ ℝ 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡  

 𝑎 • 1 = 1 • 𝑎 = 𝑎                   Existence of multiplicative identity.  

10. For every 𝑎 ≠ 0 ∈ ℝ there is a number 
1

𝑎
∈ ℝ 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡  

 𝑎 • (
1

𝑎
)  = (

1

𝑎
) • 𝑎 = 1            Existence of multiplicative inverse.  

11. For 𝑎, 𝑏, 𝑐 ∈ ℝ, 𝑎 • (𝑏 + 𝑐) = 𝑎 • 𝑏 + 𝑎 • 𝑐   Multiplication distributive over addition.  

Definition:  

                A set which satisfies all above properties is called as a Field.   

For example  

      1. A set of all real numbers (ℝ) is a field.  

      2. The set of all rational numbers (ℚ) is a field.  

      3. The set of integers is not a field 
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Theorem 1:  

(a) If 𝑎 𝑎𝑛𝑑 𝑧 are any elements of ℝ such that 𝑧 + 𝑎 = 𝑎 then 𝑧 = 0.  

(b) If 𝑢 𝑎𝑛𝑑 𝑏 ≠ 0 are any elements of ℝ such that 𝑢 • 𝑏 = 𝑏 then 𝑢 = 1.  

(c) If 𝑎 is any element of ℝ then 𝑎 • 0 = 0 = 0 • 𝑎.  

(d) If 𝑎 ≠ 0 𝑎𝑛𝑑 𝑏 in ℝ such that 𝑎 • 𝑏 = 1 𝑡ℎ𝑒𝑛 𝑏 =
1

𝑎
. 

(e) If 𝑎 • 𝑏 = 0 then either 𝑎 = 0 𝑜𝑟 𝑏 = 0 𝑜𝑟 both are zero.  

(f) If 𝑎, 𝑏 are in ℝ such that 𝑎 + 𝑏 = 0 𝑡ℎ𝑒𝑛 𝑏 = −𝑎.  

Proof:  

(a) It is given that 𝑧 + 𝑎 = 𝑎 

we add (−𝑎) on both sides of the above equation; which gives us 

 (𝑧 + 𝑎) + (−𝑎) = 𝑎 + (−𝑎) 

⟹ 𝑧 + (𝑎 + (−𝑎)) = 0, by axiom (Associativity of ‘+′ ) 

∴ 𝑧 + 0 = 0,                       by axiom (Existence of additive inverse ) 

∴ 𝑧 = 0.                     by axiom (Existence of additive identity)  

(b) Since 𝑏 ≠ 0 there exist 
1

𝑏
 in ℝ such that 𝑏 •

1

𝑏
= 1.  

We are given that 𝑢 • 𝑏 = 𝑏.  

     Multiply both sides by 1/b.  

∴ (𝑢 • 𝑏) •
1

𝑏
= 𝑏 •

1

𝑏
   

∴ 𝑢 • (𝑏 •
1

𝑏
) = 1, by axiom (8) and (10) 

∴ 𝑢 • 1 = 1, by axiom (10) 

∴ 𝑢 = 1.   By axiom (9)  

(c) We know that, 1 + 0 = 1  by axiom (4)  

 Multiply by ‘𝑎′ on both sides of the above equation and using  axiom (11) 

It gives us; 𝑎 • 1 +  𝑎 • 0 = 𝑎 • 1 
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⟹ 𝑎 • 1 + 𝑎 • 0 = 𝑎 • 1  

⟹ 𝑎 +  𝑎 • 0 = 𝑎  by axiom (9) 

Now, add (−𝑎) on both sides of above equation we will get  

(−𝑎) + 𝑎 + 𝑎 • 0 = (−𝑎) + 𝑎  

⇒ (𝑎 + (−𝑎)) + 𝑎 • 0 = 0  

⇒ 0 + 𝑎 • 0 = 0  

⇒ 𝑎 • 0 = 0.   

Similarly; 0 • 𝑎 = 0  

(d) Since 𝑎 ≠ 0 by axiom (10) there exist 
1

𝑎
∈ ℝ such that 𝑎 •

1

𝑎
= 1.  

We know that, 𝑏 = 1 • 𝑏  by axiom (9) 

       = (𝑎 •
1

𝑎
) • 𝑏, by above  

      = (
1

𝑎
• 𝑎) • 𝑏, by axiom (7) 

      =
1

𝑎
• (𝑎 • 𝑏), by axiom (8) 

      =
1

𝑎
• 1, by given hypothesis that 𝑎 • 𝑏 = 1 

  ∴ 𝑏 =
1

𝑎
 .   By axiom (9) 

(e) Suppose 𝑎 ≠ 0 then there exists 
1

𝑎
∈ ℝ 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝑎 •

1

𝑎
= 1.  

Now, we have given that 𝑎 • 𝑏 = 0 Multiply both sides by  
1

𝑎
.   

1

𝑎
• (𝑎 • 𝑏) =

1

𝑎
• 0    

⇒ (
1

𝑎
• 𝑎) • 𝑏 = 0, by axiom (8) and (9) 

⇒ 1 • 𝑏 = 0   by axiom (10) 

⇒ 𝑏 = 0.   by axiom (9) 

Similarly, we can prove that if 𝑏 ≠ 0 𝑡ℎ𝑒𝑛 𝑎 = 0.  
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(f) We have given that 𝑎 + 𝑏 = 0.  

Adding (−𝑎) in both sides, we get  

(−𝑎) + (𝑎 + 𝑏) = (−𝑎) + 0  

∴ ((−𝑎) + 𝑎) + 𝑏 = −𝑎   by axiom (3) and (4) 

∴ 0 + 𝑏 = −𝑎   by axiom (5) 

∴ 𝑏 = −𝑎   by axiom (4)  

 

Theorem 2: Let 𝑎, 𝑏 ∈ ℝ then  

(a) The equation 𝑎 + 𝑥 = 𝑏 has unique solution 𝑥 = (−𝑎) + 𝑏 in ℝ.  

(b) If 𝑎 ≠ 0 then the equation 𝑎 • 𝑥 = 𝑏 has unique solution 𝑥 = (
1

𝑎
) • 𝑏 in ℝ.   

Proof:  

(a) We have given that 𝑎 + 𝑥 = 𝑏.  

Adding (−𝑎) in both sides,  

(−𝑎) + (𝑎 + 𝑥) = (−𝑎) + 𝑏  

∴ ((−𝑎) + 𝑎) + 𝑥 = (−𝑎) + 𝑏  by axiom (3) 

∴ 0 + 𝑥 = (−𝑎) + 𝑏   by axiom (4) 

∴ 𝑥 = (−𝑎) + 𝑏, which is a solution.  

To show the uniqueness, suppose there are two solutions (say) 𝑥1, 𝑥2 .  

∴ 𝑎 + 𝑥1 = 𝑏 𝑎𝑛𝑑 𝑎 + 𝑥2 = 𝑏. So, we need to show that 𝑥1 = 𝑥2.   

Subtracting the above equations, we get 

 𝑥1 − 𝑥2 = 0 

⇒ 𝑥1 = 𝑥2.   

(b)  

We have given that 𝑎 • 𝑥 = 𝑏 ...... (i) 

𝑎𝑛𝑑 𝑎 ≠ 0 ∴  ∃ 
1

𝑎
∈ ℝ 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝑎 •

1

𝑎
= 1. 
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 Multiply both sides of equation (i) by 
1

𝑎
 . 

∴
1

𝑎
• (𝑎 • 𝑥) = (

1

𝑎
) • 𝑏  

∴ (
1

𝑎
• 𝑎) • 𝑥 = (

1

𝑎
) • 𝑏  

∴ 1 • 𝑥 = (
1

𝑎
) • 𝑏  

∴ 𝑥 = (
1

𝑎
) • 𝑏, which is the required solution.  

Now, for uniqueness, suppose there are two solutions (say) 𝑥1, 𝑥2  

∴ 𝑎 • 𝑥1 = 𝑏 𝑎𝑛𝑑 𝑎 • 𝑥2 = 𝑏.  

Here, we need to show that 𝑥1 = 𝑥2.   

Subtracting these equations, we will get   

𝑎 • (𝑥1 − 𝑥2) = 0  

⇒ 𝑥1 − 𝑥2 = 0, 𝑠𝑖𝑛𝑐𝑒 𝑎 ≠ 0 𝑔𝑖𝑣𝑒𝑛  

⇒ 𝑥1 = 𝑥2.   

Theorem 3: If 𝑎 ∈ ℝ then  

(a) (−1) • 𝑎 = −𝑎  

(𝑏) − (−𝑎) = 𝑎  

(𝑐) (−1) • (−1) = 1  

Proof: Left as an Exercise 

Theorem 4: Let 𝑎, 𝑏, 𝑐 ∈ ℝ then  

(𝑎) 𝐼𝑓 𝑎 ≠ 0 𝑡ℎ𝑒𝑛 
1

𝑎
≠ 0 𝑎𝑛𝑑 

1
1

𝑎

= 𝑎  

(𝑏) 𝐼𝑓 𝑎 • 𝑏 = 𝑎 • 𝑐 𝑎𝑛𝑑 𝑎 ≠ 0 𝑡ℎ𝑒𝑛 𝑏 = 𝑐.   

Proof: Left as an Exercise 
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Example 1: 

For any 𝑎, 𝑏 ∈ ℝ prove that  

  (i) If  𝑎 + 𝑏 = 0 𝑡ℎ𝑒𝑛 𝑏 = −𝑎.        (ii)(−1) · a = −a.  

Solution:  

(i) Suppose,𝑎 + 𝑏 = 0, adding (−𝑎) to both sides, we get (−𝑎) + (𝑎 + 𝑏) = (−𝑎) + 0 

∴ 𝐿. 𝐻. 𝑆. = ((−𝑎) + 𝑎) + 𝑏, 𝑏𝑦 𝑎𝑥𝑖𝑜𝑚 (3)  

                 = 0 + 𝑏, 𝑏𝑦 𝑎𝑥𝑖𝑜𝑚 (5)  

                 = 𝑏, 𝑏𝑦 𝑎𝑥𝑖𝑜𝑚 (4) ……. (*)  

𝑁𝑜𝑤, 𝑅. 𝐻. 𝑆. = (−𝑎) + 0 = −𝑎 ……. (*)  

From (*) and (*), 𝑏 = −𝑎.  

(ii) We know that 0 = 0 · 𝑎.  

 Also,  (−1) + 1 = 0…. (a) and 1 · 𝑎 = 𝑎 ….. (b) 

∴ Consider,  

 0 = 0 · 𝑎 = (1 + (−1)) · 𝑎, 𝑏𝑦 (𝑎) 

     = 1 · 𝑎 + (−1) · 𝑎, 𝑏𝑦 𝑎𝑥𝑖𝑜𝑚 (11)  

     = 𝑎 + (−1) · 𝑎, 𝑏𝑦 (𝑏)  

Adding (– 𝑎) to both sides, we get   

– 𝑎 + 0 = −𝑎 + 𝑎 + (−1)𝑎  

              = (−𝑎 + 𝑎) + (−1)𝑎  

∴ (−𝑎 + 𝑎) + (−1)𝑎 = −𝑎 + 0  

∴ 0 + (−1)𝑎 = −𝑎 + 0, 𝑏𝑦 𝑎𝑥𝑖𝑜𝑚 (5)  

⇒ (−1)𝑎 = −𝑎, by axiom (4).  
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Example 2:  

If 𝑎 ∈ ℝ 𝑠. 𝑡. 𝑎 · 𝑎 = 𝑎 then prove that either 𝑎 = 0 𝑜𝑟 𝑎 = 1.  

Solution:  

Suppose 𝑎 ∈ ℝ  𝑠. 𝑡.  𝑎 · 𝑎 = 𝑎  

∴ 𝑎2 = 𝑎  

∴ 𝑎2 − 𝑎 = 0  

∴ 𝑎(𝑎 − 1) = 0  

∴ by Theorem 1(e), 𝑎 = 0 𝑜𝑟 𝑎 − 1 = 0  

∴ 𝑎 = 0 𝑜𝑟 𝑎 = 1.  

 

 Order Properties of ℝ  

Property 1: Closurness  

Suppose 𝑆 is a non-empty subset of ℝ+  

 𝑂1: 𝐼𝑓 𝑎, 𝑏 ∈ 𝑆 then 𝑎 + 𝑏 ∈ 𝑆 . 

𝑂2: 𝐼𝑓 𝑎, 𝑏 ∈ 𝑆 𝑡ℎ𝑒𝑛 𝑎 · 𝑏 ∈ 𝑆.  

Property 2: Trichotomy Property 

If 𝑎 ∈ ℝ then exactly one of the following holds 𝑎 ∈ ℝ+, 𝑎 = 0 , −𝑎 ∈ ℝ−.  

               This property divides the set of real numbers ℝ into three sets (which are 

subsets of ℝ) viz. Set of all negative real numbers, set of all positive real numbers and set 

containing only 0 element. Thus, Set of real numbers is the union of three disjoint sets.     

i. e. ℝ = {ℝ−} ∪ {𝟎} ∪ {ℝ+}.  

(i) If 𝑎 ∈ ℝ 𝑎𝑛𝑑 𝑎 > 0 then we say that 𝑎 is positive (strictly positive) real 

number.  

(ii) If 𝑎 ∈ ℝ+ ∪ {0} 𝑤𝑒 𝑤𝑟𝑖𝑡𝑒 𝑖𝑡 𝑎𝑠 𝑎 ≥ 0, say that 𝑎 is non-negative real 

number. 

(iii) If −𝑎 ∈ ℝ we write 𝑎 < 0, say that 𝑎 is a negative (strictly negative) real 

number. 

(iv) If −𝑎 ∈ ℝ− ∪ {0}, we write 𝑎 ≤ 0, say that 𝑎 is a non-positive real number.   
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Property: Law of Trichotomy 

               If 𝑎 𝑎𝑛𝑑 𝑏 are elements of ℝ then exactly one of the following is true  either   

𝑎 < 𝑏 𝑜𝑟 𝑎 = 𝑏 𝑜𝑟 𝑎 > 𝑏.  

Result: Suppose that  𝑎 𝑎𝑛𝑑 𝑏 are real numbers then  

(i) If 𝑎 − 𝑏 ∈ ℝ+ then 𝑎 > 𝑏 𝑜𝑟 𝑏 < 𝑎.  

(ii) If  𝑎 − 𝑏 ∈ ℝ+ ∪ {0} then 𝑎 ≥ 𝑏 𝑜𝑟 𝑏 ≤ 𝑎.  

Definition:    The statement which involves order relation is called an Inequality.  

Theorem 5:  

                        Suppose 𝑎, 𝑏, 𝑐 are any elements of ℝ.  

(i) If 𝑎 > 𝑏 𝑎𝑛𝑑 𝑏 > 𝑐 𝑡ℎ𝑒𝑛 𝑎 > 𝑐.  

(ii) If 𝑎 > 𝑏 𝑡ℎ𝑒𝑛 𝑎 + 𝑐 > 𝑏 + 𝑐.  

(iii) If 𝑎 > 𝑏 𝑎𝑛𝑑 𝑐 > 0 𝑡ℎ𝑒𝑛 𝑐𝑎 > 𝑐𝑏.  

(iv) If 𝑎 > 𝑏 𝑎𝑛𝑑 𝑐 < 0 𝑡ℎ𝑒𝑛 𝑐𝑎 < 𝑐𝑏.  

Proof:  

(i) As 𝑎 > 𝑏 𝑎𝑛𝑑 𝑏 > 𝑐  

∴ 𝑎 − 𝑏, 𝑏 − 𝑐 ∈ ℝ 𝑡ℎ𝑒𝑛 𝑏𝑦 𝑂1,  

(𝑎 − 𝑏) + (𝑏 − 𝑐) = 𝑎 − 𝑐 ∈ ℝ+  

⇒ 𝑎 > 𝑐.  

      (ii) As  𝑎 > 𝑏 

∴ 𝑎 − 𝑏 ∈ ℝ 𝑏𝑢𝑡 𝑎 − 𝑏 = (𝑎 + 𝑐) − (𝑏 + 𝑐) ∈ ℝ+  

∴ 𝑎 + 𝑐 > 𝑏 + 𝑐. 

(iii) As 𝑎 > 𝑏 𝑎𝑛𝑑 𝑐 > 0  

∴ 𝑏𝑦 𝑂2, 𝑐(𝑎 − 𝑏) = 𝑐𝑎 − 𝑐𝑏 ∈ ℝ+  

⇒ 𝑐𝑎 > 𝑐𝑏.  

(iv) As 𝑎 > 𝑏 𝑎𝑛𝑑 𝑐 < 0  

∴ 𝑏𝑦 𝑂2, (−𝑐)(𝑎 − 𝑏) = 𝑐𝑏 − 𝑐𝑎 ∈ ℝ+  

⇒ 𝑐𝑏 > 𝑐𝑎 𝑖. 𝑒. 𝑐𝑎 < 𝑐𝑏.  
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Theorem 6: 

 (i) If 𝑎 ∈ ℝ 𝑎𝑛𝑑 𝑎 ≠ 0 𝑡ℎ𝑒𝑛 𝑎2 > 0.  

 (ii) 1 > 0.  

 (iii) If 𝑛 ∈ ℕ 𝑡ℎ𝑒𝑛 𝑛 > 0.  

Proof:  

(i) As 𝑎 ≠ 0 ∴ by Trichotomy Property, 𝑎 > 0 𝑜𝑟 𝑎 < 0.  

Now, if 𝑎 > 0 then by 𝑂2, 𝑎2 = 𝑎 • 𝑎 > 0.  

Again if 𝑎 < 0 𝑡ℎ𝑒𝑛 − 𝑎 > 0 ∴ 𝑎2 = (−𝑎) • (−𝑎) > 0.   

(ii) Since 1 = 12 > 0 𝑏𝑦 (𝑖) 𝑎𝑏𝑜𝑣𝑒, 1 > 0.  

(iii) We will use Mathematical Induction on 𝑛.  

Step 1: Take 𝑛 = 1 𝑡ℎ𝑒𝑛 𝑏𝑦 (𝑖𝑖) 𝑎𝑏𝑜𝑣𝑒 1 > 0.  

Step 2: Assume that result is true for 𝑛 = 𝑘. i. e. 𝑘 > 0 

Step 3: To prove the result for   𝑛 = 𝑘 + 1   

Now, from Step 1 and Step 2: 1 > 0 and 𝑘 > 0 

∴ 𝑏𝑦 𝑂1, 𝑘 + 1 ∈ ℝ+ 𝑎𝑛𝑑 𝑘 + 1 > 0 .  

Hence, by Mathematical Induction the result is true for all 𝑛 ∈ ℕ.  

Theorem 7: 

 If 𝑎𝑏 > 0 𝑡ℎ𝑒𝑛 𝑒𝑖𝑡ℎ𝑒𝑟 

 (𝑖) 𝑎 > 0 𝑎𝑛𝑑 𝑏 > 0 𝑜𝑟   

(𝑖𝑖) 𝑎 < 0 𝑎𝑛𝑑 𝑏 < 0.  

Proof:  

Here, note that 𝑎𝑏 > 0 ⇒ 𝑎 ≠ 0 𝑎𝑛𝑑 𝑏 ≠ 0. By law of Trichotomy, either 𝑎 > 0 𝑜𝑟 𝑎 < 0.  

(i) If 𝑎 > 0 𝑡ℎ𝑒𝑛
1

𝑎
> 0 ∴ 𝑏 = (

1

𝑎
) (𝑎𝑏) > 0.  

(ii) If 𝑎 < 0 𝑡ℎ𝑒𝑛
1

𝑎
< 0 ∴ 𝑏 = (

1

𝑎
) (𝑎𝑏) < 0.  

 



11 
 

Corollary: If 𝑎𝑏 < 0 𝑡ℎ𝑒𝑛 𝑒𝑖𝑡ℎ𝑒𝑟  

(𝑖) 𝑎 < 0 𝑎𝑛𝑑 𝑏 > 0 𝑜𝑟   

(𝑖𝑖) 𝑎 > 0 𝑎𝑛𝑑 𝑏 < 0.   

Example 3: Determine the set A of all real numbers 𝑥 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 2𝑥 − 3 ≤ 6.  

Solution: For 𝑥 ∈ 𝐴, 𝑤𝑒 ℎ𝑎𝑣𝑒 2𝑥 − 3 ≤ 6,  

Adding ‘3’ in both sides we have, 2𝑥 ≤ 9. 

∴ 𝑥 ≤
9

2
. Hence, the required set A is 𝐴 = {𝑥 ∈ ℝ: 𝑥 ≤

9

2
}.  

 

Example 4: Determine the set 𝐴 = {𝑥 ∈ ℝ: 𝑥2 + 𝑥 > 2}.  

Solution: For 𝑥 ∈ 𝐴, 𝑤𝑒 ℎ𝑎𝑣𝑒 𝑥2 + 𝑥 > 2 ∴ 𝑥2 + 𝑥 − 2 > 0  

∴ (𝑥 − 1)(𝑥 + 2) > 0..... (*)  

Case (i) (𝑥 − 1) > 0 𝑎𝑛𝑑 (𝑥 + 2) > 0 ∴ 𝑥 > 1 𝑎𝑛𝑑 𝑥 > −2.  

But the (*) is true only for 𝑥 > 1.  

Case (ii) (𝑥 − 1) < 0 𝑎𝑛𝑑 (𝑥 + 2) < 0 ∴ 𝑥 < 1 𝑎𝑛𝑑 𝑥 < −2.  

But (*) is true only when 𝑥 < −2.  

Hence, the required set A is 𝐴 = {𝑥 ∈ ℝ: 𝑥 > 1} ∪ {𝑥 ∈ ℝ: 𝑥 < −2}.  

 

Example 5: Determine the set 𝐴 = {𝑥 ∈ ℝ: 𝑥2 > 3𝑥 + 4}. 

Solution: For 𝑥 ∈ 𝐴, 𝑤𝑒 ℎ𝑎𝑣𝑒 𝑥2 > 3𝑥 + 4 ∴ 𝑥2 − 3𝑥 − 4 > 0  

∴ (𝑥 − 4)(𝑥 + 1) > 0..... (*)  

 Case (i) (𝑥 − 4) > 0 𝑎𝑛𝑑 (𝑥 + 1) > 0 

∴ 𝑥 > 4 𝑎𝑛𝑑 𝑥 > −1. But the (*) is true only for 𝑥 > 4.  

Case (ii) (𝑥 − 4) < 0 𝑎𝑛𝑑 (𝑥 + 1) < 0 

∴ 𝑥 < 4 𝑎𝑛𝑑 𝑥 < −1.  

But (*) is true only when 𝑥 < −1.  

Hence, the required set A is 𝐴 = {𝑥 ∈ ℝ: 𝑥 > 4} ∪ {𝑥 ∈ ℝ: 𝑥 < −1}. 
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Property: Bernoulli's inequality-  

Statement: If 𝑥 > −1 then (1 + 𝑥)𝑛 ≥ 1 + 𝑛𝑥, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑛 ∈ ℕ.  

Proof: We shall prove this result by Mathematical Induction on 𝑛.  

Step 1: Take 𝑛 = 1 𝑡ℎ𝑒𝑛 𝐿. 𝐻. 𝑆. = 1 + 𝑥 ≥ 1 + 𝑥 = 𝑅. 𝐻. 𝑆.   

Step 2: Assume that result is true for 𝑛 = 𝑘, 𝑘 > 1. i. e.(1 + 𝑥)𝑘 ≥ 1 + 𝑘𝑥. 

Step 3: To prove the result for 𝑛 = 𝑘 + 1   

Now, (1 + 𝑥)𝑘+1 = (1 + 𝑥)𝑘(1 + 𝑥) 

                                ≥ (1 + 𝑘𝑥)(1 + 𝑥) 

                               = 𝑘𝑥2 + (𝑘 + 1)𝑥 + 1 

                               ≥ 1 + (𝑘 + 1)𝑥. 

⇒ (1 + 𝑥)𝑘+1  ≥ 1 + (𝑘 + 1)𝑥 

 i. e. the result is true for 𝑛 = 𝑘 + 1.  

Hence by mathematical induction the result is true for all 𝑛 ∈ ℕ.   

Theorem 8: If 𝑎, 𝑏  are any elements 𝑜𝑓 ℝ  𝑎𝑛𝑑 𝑖𝑓 𝑎 < 𝑏 𝑡ℎ𝑒𝑛 𝑎 <
1

2
(𝑎 + 𝑏) < 𝑏.  

Proof:  

Since 𝑎 < 𝑏  adding 𝑎 in both sides,  

𝑎 + 𝑎 = 2𝑎 < 𝑎 + 𝑏. ….. (i) 

Also adding 𝑏 in both sides, 

 𝑎 + 𝑏 < 𝑏 + 𝑏 = 2𝑏. ….. (ii)  From (i) and (ii) we will get, 

∴ 2𝑎 < 𝑎 + 𝑏 < 2𝑏.  

Hence, 𝑎 <
1

2
(𝑎 + 𝑏) < 𝑏.  

Corollary: If 𝑏 ∈ ℝ 𝑎𝑛𝑑 𝑏 ≠ 0 𝑡ℎ𝑒𝑛 0 <
1

2
𝑏 < 𝑏.  

Proof: Take 𝑎 = 0 in above theorem.  

Definition: If 𝑎, 𝑏 > 0 ∈ ℝ then their Arithmetic  Mean and Geometric Mean is given by 

𝐴. 𝑀. =
1

2
(𝑎 + 𝑏 )  and  𝐺. 𝑀. = √𝑎. 𝑏 
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Theorem 9: If 𝑎, 𝑏 > 0 ∈ ℝ then √𝑎. 𝑏 ≤
1

2
(𝑎 + 𝑏) and equality holds ⟺ 𝑎 = 𝑏.  

Proof:  

Step I] Since 𝑎 > 0, 𝑏 > 0 𝑎𝑛𝑑 𝑎 ≠ 𝑏. 

⇒ √𝑎 > 0, √𝑏 > 0 𝑎𝑛𝑑 √𝑎 ≠ √𝑏 . 

∴ (√𝑎 − √𝑏 )
2

> 0  

∴ 𝑎 − 2√𝑎. √𝑏 + 𝑏 > 0  

⇒ 𝑎 − 2√𝑎. 𝑏 + 𝑏 > 0  

⇒ √𝑎. 𝑏 ≤
1

2
(𝑎 + 𝑏).  

            Now, if 𝑎 = 𝑏(> 0) then both sides of inequality equal to 𝑎. Therefore it becomes 

an equality, which proves that inequality holds for 𝑎 > 0, 𝑏 > 0.  

Step II] Conversely, Suppose that 𝑎 > 0, 𝑏 > 0 𝑎𝑛𝑑 √𝑎. 𝑏 =
1

2
(𝑎 + 𝑏). Here, squaring 

both sides and multiplying by 4.  

∴ 4𝑎. 𝑏 = (𝑎 + 𝑏)2 = 𝑎2 + 2𝑎. 𝑏 + 𝑏2  

∴ 𝑎2 − 2𝑎. 𝑏 + 𝑏2 = 0. 

⇒ (𝑎 − 𝑏)2 = 0 ⇔ 𝑎 = 𝑏.  

 

Absolute Value of a real number:  

Definition: The absolute value of a real number 𝑥 is denoted by |𝑥| and is defined as-  

|𝑥| = {

𝑥,             𝑖𝑓 𝑥 > 0;
0,             𝑖𝑓 𝑥 = 0;
−𝑥, 𝑖𝑓 𝑥 < 0.

 

     Note that: Absolute value of a real number is never negative i. e. it is always positive. 

This is because, absolute value of a real numbers gives us the distance of that number from 

‘0’ on real line. 
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Theorem 10: 

 (i) |𝑎. 𝑏| = |𝑎||𝑏|, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑎, 𝑏 𝑖𝑛 ℝ.  

(ii) |𝑎|2 = |𝑎2| = 𝑎2, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑎 𝑖𝑛 ℝ.  

(iii) If 𝑐 ≥ 𝑜 𝑡ℎ𝑒𝑛 |𝑥| ≤ 𝑐 𝑖𝑓 𝑎𝑛𝑑 𝑜𝑛𝑙𝑦 𝑖𝑓 − 𝑐 ≤ 𝑥 ≤ 𝑐.  

(iv) −|𝑥| ≤ |𝑥| ≤ |𝑥|, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥 𝑖𝑛 ℝ.  

Proof: 

(i) If either 𝑎 𝑜𝑟 𝑏 is equal to 0 then the result is true. 

Case (a) If 𝑎 > 0 𝑎𝑛𝑑 𝑏 > 0 𝑡ℎ𝑒𝑛 𝑎𝑏 > 0  

∴  |𝑎. 𝑏| = 𝑎𝑏 = |𝑎||𝑏|.  

Case (b) If 𝑎 < 0 𝑎𝑛𝑑 𝑏 < 0 𝑡ℎ𝑒𝑛 𝑎𝑏 > 0  

∴  |𝑎. 𝑏| = 𝑎𝑏 = (−𝑎). (−𝑏) = |𝑎||𝑏|.  

Case (c) If 𝑎 > 0 𝑎𝑛𝑑 𝑏 < 0 𝑡ℎ𝑒𝑛 𝑎𝑏 < 0  

∴  |𝑎. 𝑏| = −𝑎𝑏 = 𝑎. (−𝑏) = |𝑎||𝑏|.  

Case (d) If 𝑎 < 0 𝑎𝑛𝑑 𝑏 > 0 𝑡ℎ𝑒𝑛 𝑎𝑏 < 0  

∴  |𝑎. 𝑏| = −𝑎𝑏 = (−𝑎). 𝑏 = |𝑎||𝑏|.  

Thus in all cases the equality holds good.  

(ii) Since 𝑎2 > 0, 𝑤𝑒 ℎ𝑎𝑣𝑒 |𝑎2| = |𝑎. 𝑎| = |𝑎||𝑎| = |𝑎|2 = 𝑎2. i. e. |𝑎| is the non-negative 

square root of 𝑎2. 

(iii) If |𝑥| ≤ 𝑐 then we have by definition of absolute value, 𝑥 ≤ 𝑐 𝑎𝑛𝑑 − 𝑥 ≤ 𝑐 𝑖. 𝑒.   

 𝑥 ≥ −𝑐 𝑎𝑛𝑑 𝑥 ≤ 𝑐. ∴  −𝑐 ≤ 𝑥 ≤ c.  

Conversely, if – 𝑐 ≤ 𝑥 ≤ 𝑐 𝑡ℎ𝑒𝑛 𝑤𝑒 ℎ𝑎𝑣𝑒, 𝑥 ≤ 𝑐 𝑎𝑛𝑑 − 𝑐 ≤ 𝑥  

 𝑖. 𝑒. 𝑥 ≤ 𝑐 𝑎𝑛𝑑 − 𝑥 ≤ 𝑐  

⇒ |𝑥| ≤ 𝑐. Hence the result is proved.  

(iv) Put 𝑐 = |𝑥| in above (iii) we will get, −|𝑥| ≤ |𝑥| ≤ |𝑥|.  
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Theorem 11: Triangle inequality: 

Statement: 𝐼𝑓 𝑎, 𝑏 𝑖𝑛 ℝ 𝑡ℎ𝑒𝑛 |𝑎 + 𝑏| ≤ |𝑎| + |𝑏|.  

Proof: We have −|𝑎| ≤ |𝑎| ≤ |𝑎|  𝑎𝑛𝑑 − |𝑏| ≤ |𝑏| ≤ |𝑏|.  

Adding these we will get,  

−(|𝑎| + |𝑏|) ≤ (𝑎 + 𝑏) ≤ (|𝑎| + |𝑏|).  

Using Theorem 10 (iv), we get |𝑎 + 𝑏| ≤ |𝑎| + |𝑏|.  

Corollary: 𝐼𝑓 𝑎, 𝑏 𝑖𝑛 ℝ  𝑡ℎ𝑒𝑛  

(𝑖)||𝑎| − |𝑏|| ≤ |𝑎 − 𝑏|         (𝑖𝑖)|𝑎 − 𝑏| ≤ |𝑎| + |𝑏|.  

Proof:  

(i) We write 𝑎 = (𝑎 − 𝑏) + 𝑏.  𝑇𝑎𝑘𝑖𝑛𝑔 𝑎𝑏𝑠𝑜𝑙𝑢𝑡𝑒 𝑣𝑎𝑙𝑢𝑒, 

 |𝑎| = |(𝑎 − 𝑏) + 𝑏| ≤ |𝑎 − 𝑏| + |𝑏| 

⇒  |𝑎| − |𝑏| ≤ |𝑎 − 𝑏|...... (*)  

Now, 𝑏 = (𝑏 − 𝑎) + 𝑎. Taking absolute value,  

|𝑏| = |(𝑏 − 𝑎) + 𝑎| ≤ |𝑏 − 𝑎| + |𝑎|  

= −|𝑏 − 𝑎| + |𝑎| = −|𝑎 − 𝑏| + |𝑎|.  

⇒ −|𝑎 − 𝑏| ≤ |𝑎| − |𝑏|....... (**) 

 From inequality (*) and (**), we will get, 

 ||𝑎| − |𝑏|| ≤ |𝑎 − 𝑏|.  

(ii) Replace b by (-b) in triangle inequality, 

 ∴ |𝑎 + (−𝑏)| ≤ |𝑎| + |−𝑏| 

∴ |𝑎 − 𝑏| ≤ |𝑎| + |𝑏|, 𝑆𝑖𝑛𝑐𝑒 |−𝑏| = |𝑏|.  

Corollary: If 𝑎1, 𝑎2, 𝑎3, … , 𝑎𝑛 ∈ ℝ 𝑡ℎ𝑒𝑛 

 |𝑎1 + 𝑎2 + 𝑎3 + ⋯ + 𝑎𝑛| ≤ |𝑎1| + |𝑎2| + |𝑎3| + ⋯ + |𝑎𝑛|.  
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Theorem 12: 𝐼𝑓 𝑎, 𝑏 ∈ ℝ then |𝑎 + 𝑏| = |𝑎| + |𝑏| if and only if 𝑎. 𝑏 ≥ 0.   

Proof:  

Part I:  

Let us suppose that |𝑎 + 𝑏| = |𝑎| + |𝑏| for all 𝑎, 𝑏 ∈ ℝ.  

Consider, |𝑎 + 𝑏|2 = (𝑎 + 𝑏)2 = 𝑎2 + 2𝑎. 𝑏 + 𝑏2..... (i)  

and (|𝑎| + |𝑏|)2 = 𝑎2 + 𝑏2 + 2|𝑎||𝑏|..... (ii)  

From (i) and (ii), |𝑎||𝑏| = 𝑎𝑏 𝑖. 𝑒. |𝑎. 𝑏| = 𝑎. 𝑏..... (iii) 

Now, on the contrary assume that 𝑎𝑏 < 0 ∴ |𝑎𝑏| = −𝑎. 𝑏. With this, equation (iii) 

becomes 2𝑎. 𝑏 = 0 ⇒ 𝑎. 𝑏 = 0 

⇒ 𝑒𝑖𝑡ℎ𝑒𝑟 𝑎 = 0 𝑜𝑟 𝑏 = 0. This gives the contradiction to the fact that 𝑎. 𝑏 < 0.  

Hence, 𝑎. 𝑏 ≥ 0.  

Part II (Converse):  

Suppose that 𝑎. 𝑏 ≥ 0.  

Case 1: 𝑎. 𝑏 = 0 ⇒ 𝑎 = 0 𝑜𝑟 𝑏 = 0. 

𝐿𝑒𝑡 𝑎 = 0 𝑡ℎ𝑒𝑛 |𝑎 + 𝑏| = |0 + 𝑏| = |0| + |𝑏| = |𝑏|.  

Case 2: 𝑎. 𝑏 > 0 ⇒ 𝑒𝑖𝑡ℎ𝑒𝑟 𝑎 > 0, 𝑏 > 0 𝑜𝑟 𝑎 < 0, 𝑏 < 0.  

Here, in both the cases we will get, |𝑎 + 𝑏| = |𝑎| + |𝑏|.  

 

Theorem 13: If 𝑎, 𝑏 ∈ ℝ 𝑎𝑛𝑑 𝑏 ≠ 0 𝑡ℎ𝑒𝑛 |𝑎| = √𝑎2.  

Proof:  

If 𝑎 ≥ 0 𝑡ℎ𝑒𝑛 |𝑎| = 𝑎 𝑎𝑛𝑑 √𝑎2 = 𝑎 ∴  |𝑎| = √𝑎2.  

If 𝑎 < 0 𝑡ℎ𝑒𝑛 |𝑎| = −𝑎 𝑎𝑛𝑑 √𝑎2 = √(−𝑎)(−𝑎) = −𝑎 

∴ ℎ𝑒𝑟𝑒 𝑎𝑙𝑠𝑜 |𝑎| = √𝑎2.  

Thus, in both the cases we get, |𝑎| = √𝑎2.   

Note that: |
𝑥

𝑦
| =

|𝑥|

|𝑦|
 , 𝑖𝑓 𝑦 ≠ 0.  
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Theorem 14: 𝐹𝑜𝑟 𝑥, 𝑦, 𝑎, 𝑏 ∈ ℝ 𝑎𝑛𝑑 |𝑎| ≠ |𝑏|, |
𝑥+𝑦

𝑎+𝑏
| ≤

|𝑥|+|𝑦|

||𝑎|−|𝑏||
 . 

Proof:  

We know that 0 ≤ |𝑥 + 𝑦| ≤ |𝑥| + |𝑦| 𝑎𝑙𝑠𝑜  

0 < ||𝑎| − |𝑏|| ≤ |𝑎 + 𝑏|.  

Again if 0 ≤ 𝑎 < 𝑏 𝑎𝑛𝑑 0 < 𝑐 ≤ 𝑑 𝑡ℎ𝑒𝑛 𝑎𝑐 < 𝑏𝑑.  

∴ |𝑥 + 𝑦|||𝑎| − |𝑏|| ≤ (|𝑥| + |𝑦|)|𝑎 + 𝑏|  

⇒
|𝑥+𝑦|

|𝑎+𝑏|
≤

|𝑥|+|𝑦|

||𝑎|−|𝑏||
 .  

Examples: Find real number x in set A which satisfy  

(i)|2𝑥 + 5| < 9 (ii) |2𝑥 − 1| ≤ 13 (iii) 𝐴 = {𝑥 ∈ ℝ: |𝑥 − 3| < |𝑥|}   

(iv) |𝑥 − 1| > |𝑥 + 1| (v) |
2+𝑥

3+𝑥
| < 1 (vi) |3𝑥 + 4| < |𝑥 + 2|  

(vii) |𝑥 − 2| + |𝑥| = 4 (viii) |𝑥 + 1| + |𝑥 − 2| = 7 (ix) |𝑥| + |𝑥 + 1| < 2  

(x) |𝑥2 − 1| ≤ 4.   

Solution:  

(i) For 𝑥 ∈ 𝐴 ⇔ −9 < 2𝑥 + 5 < 9 

⇔ −14 < 2𝑥 < 4  

⇔ −7 < 𝑥 < 2.  

 ∴ 𝐴 = {𝑥 ∈ ℝ: − 7 < 𝑥 < 2}.  

(ii) For 𝑥 ∈ 𝐴 ⇔ −13 < 2𝑥 − 1 < 13 

⇔ −12 < 2𝑥 < 14  

⇔ −6 < 𝑥 < 7.  

(iii) We know that if 𝑎 ≥ 0, 𝑏 ≥ 0 𝑡ℎ𝑒𝑛 𝑎 < 𝑏 ⇔ 𝑎2 < 𝑏2.  

Also |𝑎|2 = 𝑎2, 𝑎𝑠 𝑎2 ≥ 0, ∀ 𝑎 ∈ ℝ.  

Now, |𝑥 − 3| < |𝑥| ⇔ |𝑥 − 3|2 < |𝑥|2 

∴ 𝑥2 − 6𝑥 + 9 < 𝑥2  

⇔ −6𝑥 + 9 < 0  
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⇔ −6𝑥 < −9  

⇔ 𝑥 >  
9

6
.   

⇔ 𝑥 >  
3

2
.   

(v) |
2+𝑥

3+𝑥
| < 1 ⇔ |2 + 𝑥| > |3 + 𝑥| 

⇔ (2 + 𝑥)2 > (3 + 𝑥)2  

⇔ 4 + 4𝑥 + 𝑥2 > 9 + 6𝑥 + 𝑥2  

⇔ −5 > 2𝑥  

⇔
−5

2
> 𝑥 𝑖. 𝑒. 𝑥 <

−5

2
.  

(vi) |3𝑥 + 4| < |𝑥 + 2| ⇔ (3𝑥 + 4)2 < (𝑥 + 2)2 

    ⇔ 8𝑥2 + 20𝑥 + 12 < 0  

    ⇔ 2𝑥2 + 5𝑥 + 3 < 0  

    ⇔ (2𝑥 + 3)(𝑥 + 1) < 0  

    ⇔ −
3

2
< 𝑥 < −1.  

(vii) Squaring both sides, we will get  

(|𝑥 − 2| + |𝑥|)2 = 16  

⇔ |𝑥 − 2|2 + |𝑥|2 + 2|𝑥 − 2||𝑥| = 16. 

⇔ (𝑥 − 2)2 + 𝑥2 + 2𝑥(𝑥 − 2) = 16  

⇔ 4𝑥2 − 8𝑥 = 12 

⇔ 𝑥2 − 2𝑥 − 3 = 0  

⇔ (𝑥 + 1)(𝑥 − 3) = 0 ⇔ 𝑥 = −1, 𝑥 = 3. 

 Hence, the set 𝐴 = {−1, 3}.  

(ix) Squaring, we will get  

 𝑥2 + 2𝑥(𝑥 + 1) + 𝑥2 + 2𝑥 + 1 < 4 ⇔ 4𝑥2 + 4𝑥 − 3 < 0 

⇔ (2𝑥 − 1)(2𝑥 + 3) < 0  

⇔ 2𝑥 − 1 < 0 𝑎𝑛𝑑 2𝑥 + 3 > 0  
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⇔ 𝑥 <
1

2
 𝑎𝑛𝑑 𝑥 > −

3

2
   

𝑖. 𝑒. −
3

2
< 𝑥 <

1

2
 . Hence, the set 𝐴 = {𝑥 ∈ ℝ: −

3

2
< 𝑥 <

1

2
}.  

(x) −4 ≤ 𝑥2 − 1 ≤ 4 ⇔ −3 ≤ 𝑥2 ≤ 5.  

Case 1: −3 ≤ 𝑥2 ⇔ 𝑥2 + 3 ≥ 0 

⇔ 𝑥2 ≥ −3  

⇔ 𝑥 ≥ 0 

Case 2: 𝑥2 ≤ 5 ⇔ (𝑥 − √5)(𝑥 + √5) ≤ 0 

⇔ 𝑥 − √5 ≤ 0 𝑎𝑛𝑑 𝑥 + √5 ≥ 0  

⇔ 𝑥 ≤ √5 𝑎𝑛𝑑 𝑥 ≥ −√5. 

 i. e. −√5 ≤ 𝑥 ≤ √5.  

Hence, 𝐴 = {𝑥 ∈ ℝ: −√5 ≤ 𝑥 ≤ √5}.   

 

 Geometrical Significance of |𝒙| ≤ 𝑪:   

           The absolute value of a real number x (|𝑥|), Geometrically means "the distance of 

x from the origin". Hence, |𝑥| ≤ 𝐶, Geometrically means "the real number 𝑥 whose 

distance from the origin is less than or equal to C".  

            The distance between two elements/numbers 𝑎 𝑎𝑛𝑑 𝑏 𝑜𝑟 𝑥 𝑎𝑛𝑑 𝑦 𝑖𝑛 ℝ  𝑖𝑠       

|𝑎 − 𝑏| 𝑜𝑟 |𝑥 − 𝑦|.   

 

Definitions:  

 Let 𝑆 be any non-empty subset of ℝ. Then  

(i) A real number "b" is said to be maximum element of 𝑆 if b∈ 𝑆 and 𝑥 ≤ 𝑏, ∀𝑥 ∈ 𝑆.            

This is denoted by 𝒃 = 𝑴𝒂𝒙 𝑺.  

(ii) A real number "a" is said to be minimum element of 𝑆 if a ∈ 𝑆 and 𝑎 ≤ 𝑥, ∀𝑥 ∈ 𝑆.  

This is denoted by 𝒂 = 𝑴𝒊𝒏 𝑺.  
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Theorem 15:  A maximum (minimum) element if it exists is unique.  

Proof: Let if possible, b 𝑎𝑛𝑑 𝑏1 are two maximum elements for a set S. 

 By the definition, 𝑏1 ≤ 𝑏 .... (1) as 𝑏 is Max.  

𝑏 ≤ 𝑏1... (2) as 𝑏1is Max.  

Therefore from (1) and (2) we will get 𝑏 = 𝑏1.  

Similarly, we can prove for minimum element.  

Definitions:  

Let 𝑆 be any non-empty subset of ℝ. Then  

(a) The set 𝑆 is said to be bounded above if there exists a number 𝑣 ∈ ℝ such that               𝑥 ≤

𝑣, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥 ∈ 𝑆. Here, v is called an upper bound of 𝑆.  

(b) The set 𝑆 is said to be bounded bellow if there exists a number 𝑢 ∈ ℝ such that                     

𝑢 ≤ 𝑥, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥 ∈ 𝑆. Here, u is called a lower bound of 𝑆.  

(c) The set 𝑆 is said to be bounded if it is both bounded above and bounded bellow.  

                A set is said to be unbounded if it is not bounded.  

Examples:  

1. 𝑇 = [2, 5.5) 𝑖. 𝑒. 2 ≤ 𝑥 < 5.5, ∀𝑥 ∈ 𝑇.  

             Here, every number 𝑖𝑠 less than 5.5 . Hence it is an upper bound of T and every 

number graeter than or equal to 2. Hence it is lower bound of T.  

⇒T is bounded above as well as bounded below.  Hence, T is bounded set. 

2. 𝑆 = (−5, 11] 𝑖. 𝑒. −5 < 𝑥 ≤ 11, ∀𝑥 ∈ 𝑆.  

            Here, every number 𝑖𝑠 less than or equal to 11. Hence it is an upper bound of S 

and every number graeter than -5. Hence it is lower bound of S.  

⇒ S is bounded above as well as bounded below.  

Hence, S is bounded set.  

3. The set ℝ− is bounded above but unbounded below.  

4. The set ℝ+ is unbounded above but bounded below. 

5. The set ℝ is unbounded set.  
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 W. O. P. (Well Ordering Principle):  

                    Every non-empty subset of set of natural numbers has a minimum (least) 

element.  i. e. if 𝑆 (≠ ∅) ⊆ ℕ 𝑡ℎ𝑒𝑛 ∃ 𝑚 ∈ 𝑆 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝑚 ≤ 𝐾, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝐾 ∈ 𝑆.  

Supremum and Infimum of a set:  

Definition:  

(a) Let 𝑆 be any non-empty subset of ℝ.  A real number 𝑴 is called the least upper bound 

or Supremum (l. u. b.) for set 𝑆 if ; 

(i) 𝑀 is an upper bound for 𝑆.  

(ii) no number less than 𝑀 is an upper bound for 𝑆. i. e for each 𝜀 > 0 the number 

𝑀 − 𝜀 is not an upper bound for 𝑆. It is denoted by 𝑴 = 𝑺𝒖𝒑𝑺.   

(b) Let 𝑆 be any non-empty subset of ℝ.  A real number 𝒎 is called the greatest lower 

bound or Infimum (g. l. b) for set 𝑆 if; 

 (i) 𝑚 is a lower bound for 𝑆.  

(ii) no number greater than 𝑚 is an upper bound for 𝑆. i. e for each 𝜀 > 0 the 

number 𝑚 + 𝜀 is not an upper bound for 𝑆. It is denoted by 𝒎 = 𝑰𝒏𝒇𝑺.  

 

Theorem 16: The Supremum (Infimum) for S is unique if it exists.  

Proof:  

Let if possible assume that S have two Suprema M and M'. 

If 𝑀 = 𝑀′.  then we are through.  

Therefore assume that 𝑀 ≠ 𝑀′.  

⇒  either 𝑀 < 𝑀′ 𝑜𝑟 𝑀 > 𝑀′.  

Now, suppose 𝑀 < 𝑀′. Since 𝑀′ is a Supremum of S, By definition, 𝑀 is not an 

upper bound for S which is a contradiction to our assumption that 𝑀 is Supremum of S.  

Again if 𝑀′ < 𝑀, since 𝑀 is Supremum, by definition, 𝑀′ is not an upper bound for 

S, which is a contradiction to our assumption that 𝑀′ is a Supremum of S.   

∴ 𝑀 = 𝑀′. 

Similarly, we can prove that the Infimum for the set S is unique if it exists.  
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Theorem 17. If 𝐼𝑛𝑓𝑆 and 𝑆𝑢𝑝𝑆 for a set S exists then 

                             𝑰𝒏𝒇𝑺 ≤ 𝒙 ≤ 𝑺𝒖𝒑𝑺, ∀𝒙 ∈ 𝑺. 𝒐𝒓 𝒈. 𝒍. 𝒃. ≤ 𝑺 ≤ 𝒍. 𝒖. 𝒃.   

Examples:  

1. Let 𝐴 = {2,4,6,8}.  Sup(A) =  8, Inf(A) = 2.  

2. 𝐼 = [4,9).   𝑆𝑢𝑝(𝐼) = 9, 𝐼𝑛𝑓(𝐼) = 4.  

Here, 𝑆𝑢𝑝(𝐼) ∉ 𝐼 𝑏𝑢𝑡 𝐼𝑛𝑓 (𝐼) ∈ 𝐼. 

3. 𝐵 = (−2,5]. 𝑆𝑢𝑝(𝐵) = 5, 𝐼𝑛𝑓(𝐵) = −2. Here, 𝑆𝑢𝑝(𝐵) ∈ 𝐵 but  𝐼𝑛𝑓(𝐵) ∉ 𝐵.  

4. 𝑍 = (−3,7). 𝑆𝑢𝑝(𝑍) = 7, 𝐼𝑛𝑓(𝑍) = −3. Here, Su𝑝(𝑍) ∉ 𝑍 𝑎𝑛𝑑 𝑎𝑙𝑠𝑜 𝐼𝑛𝑓(𝑍) ∉ 𝑍.  

Note:  

For a non-empty set 𝑆 𝑜𝑓 ℝ about the Sup. and Inf. there are four possibilities viz. 

 (i) Set S can have both Sup. and Inf.  

(ii) Set S can have a Sup. but not Inf.  

(iii) Set S can have Inf. but not Sup.  

(iv) Set S have neither Sup. nor Inf.   

         In general,  

[1] The set 𝑆 = {𝑥: 𝑎 ≤ 𝑥 ≤ 𝑏} i. e. Closed interval has Inf. as well as Sup. Moreover, both 

are in S.  

[2] The set 𝑆 = { 𝑥: 𝑎 < 𝑥 < 𝑏} i. e. Open interval has Inf. and Sup. but both they are not 

in S.   

 The Completeness Axiom/Property of ℝ:  

Every non – empty set of real numbers that is bounded above has a least upper bound 

(supremum). 

Application: 

[1] In Economics, the concept of a supremum is used in utility theory and the analysis of 

consumer preferences. The completeness property ensures the existence of an optimal 

consumption bundle. 

[2] In Engineering, the design of systems often involves optimizing certain parameters 

subject to constraints. The completeness property ensures that optimal solutions exist 

when working within bounded regions. 



23 
 

Remark:  

(1) The set of all real number ℝ is a complete ordered field.  

(2) The set of all rational numbers ℚ is not complete.  

               For, 𝐸 = {𝑥 ∈ ℚ ∶ 0 ≤ 𝑥, 𝑥2 < 2}. Then E is a non-empty subset of ℚ. The 

Supremum of E is √2  𝑏𝑢𝑡 √2 ∉ ℚ, 𝑎𝑠 𝑖𝑡 𝑖𝑠 𝑛𝑜𝑡 𝑎 𝑟𝑎𝑡𝑖𝑜𝑛𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟. Therefore, for every 

non empty subset of ℚ has no Sup. in ℚ.  i. e. ℚ does not satisfy completeness property.  

Hence, ℚ is a field but not complete ordered field.  

 

 Archimedean Property:  

Statement: If 𝑥, 𝑦 ∈ ℝ, 𝑥 > 0 𝑡ℎ𝑒𝑛 𝑓𝑜𝑟 𝑎𝑛𝑦 𝑦 ∈ ℝ ∃ 𝑛 ∈ ℕ 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝑛𝑥 > 𝑦.  

Proof:  

If 𝑦 ≤ 0 then the theorem is obvious. Now, if 𝑦 > 0. To show that; ∃ 𝑛 ∈ ℕ 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 

 𝑛𝑥 > 𝑦. Then on the contrary assume that 𝑛𝑥 < 𝑦, ∀𝑛 ∈ ℕ.  

           Consider, the set 𝑆 = {𝑛𝑥: 𝑛 ∈ ℕ} ⊆ ℕ is a non-empty set, which is bounded above. 

Hence by Completeness axiom, S has a Supremum. Let it be M.  i. e. M = Sup(S).  

Therefore, by the definition of Sup(S), 𝑛𝑥 ≤ 𝑀, ∀𝑛 ∈ ℕ 

⇒ (𝑛 + 1)𝑥 ≤ 𝑀, , ∀𝑛 ∈ ℕ.  

    ⇒ 𝑛𝑥 ≤ 𝑀 − 𝑥, ∀𝑛 ∈ ℕ.  

            This shows that 𝑀 − 𝑥 is also an upper bound of S and 𝑀 − 𝑥 < 𝑀, a contradiction 

to the assumption that M is a Sup(S). i. e. 𝑛𝑥 < 𝑦, ∀𝑛 ∈ ℕ  is wrong.  

Therefore, 𝑛𝑥 > 𝑦, ∀𝑛 ∈ ℕ. 

Corollary 1: If 𝑦 ∈ ℝ then there exists 𝑛 ∈ ℕ 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝑦 < 𝑛.  

Proof: Take 𝑥 = 1 in Archimedean property.  

Corollary 2: Let 𝑥 be a positive real number. Then 

(a) There exists 𝑛 ∈ ℕ 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 0 <
1

𝑛
< 𝑥.  

(b) There exists 𝑚 ∈ ℕ 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡  𝑚 − 1 ≤ 𝑥 < 𝑚. 
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Theorem 18: Density Theorem:  

         If 𝑥 𝑎𝑛𝑑 𝑦  are real numbers such that 𝑥 < 𝑦 then there exists a rational number 𝑟 ∈

ℝ such that 𝑥 < 𝑟 < 𝑦.  

      OR  

         Between any two distinct real numbers there is a rational number.  

      OR  

         The set ℚ (set of all rational numbers) is dense in ℝ.   

Proof:  

Here, 𝑥 > 0. 

∴ 𝑤𝑒 ℎ𝑎𝑣𝑒 0 < 𝑥 < 𝑦 ⇒ 𝑦 − 𝑥 > 0.  

Now by Archimedean property, there exists 𝑛 ∈ ℕ 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝑛(𝑦 − 𝑥) > 1  

𝑖. 𝑒. 𝑛𝑦 − 𝑛𝑥 > 1 … (i).  

Applying (b) of [Corollary 2] to 𝑛𝑥 > 0.  

       We have, 𝑚 ∈ ℕ 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝑚 − 1 ≤ 𝑛𝑥 < 𝑚  

∴ 𝑚 ≤ 𝑛𝑥 + 1 < 𝑛𝑦 𝑠𝑖𝑛𝑐𝑒 𝑏𝑦 (𝑖).  

⇒ 𝑛𝑥 < 𝑚 < 𝑛𝑦 ⇒ 𝑥 <
𝑚

𝑛
< 𝑦 

 𝑖. 𝑒. 𝑥 < 𝑟 < 𝑦;   𝑟 =
𝑚

𝑛
, a rational number.  

Corollary 3: If 𝑥 𝑎𝑛𝑑 𝑦  are real numbers such that 𝑥 < 𝑦 then there exists an irrational 

number 𝑧 ∈ ℝ such that 𝑥 < 𝑧 < 𝑦.  

Proof: Apply density theorem to real numbers  
𝑥

√2
 𝑎𝑛𝑑

𝑦

√2
 . We will get a rational number 

𝑟 ≠ 0 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 
𝑥

√2
 < 𝑟 <

𝑦

√2
⇒ 𝑥 < √2𝑟 < 𝑦 

 𝑖. 𝑒. 𝑥 < 𝑧 < 𝑦; 𝑧 = √2𝑟  is an irrational number. 
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 Examples:  

1. Show that √2 is not a rational number. OR Show that there does not exists a rational 

number 𝑥 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝑥2 = 2.  

Solution: We will prove this by Contradiction. Let if possible assume that there exists a 

rational number 
𝑝

𝑞
 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 (

𝑝

𝑞
)

2

= 2.  

As  
𝑝

𝑞
 is a rational number, we have 𝑝, 𝑞 ∈ ℤ, 𝑞 ≠ 0 𝑎𝑛𝑑 (𝑝, 𝑞) = 1.  

Now, (
𝑝

𝑞
)

2

= 2 ⇒ 𝑝2 = 2𝑞2… (a). Here, R. H. S. is an even number 

 ∴ L. H. S. is also an even number. i. e. 𝑝2 is even⇒ p is also even.  

Hence, take 𝑝 = 2𝑚, 𝑓𝑜𝑟 𝑠𝑜𝑚𝑒 𝑚 ∈ ℤ …. (*) 

 ∴ 𝑝2 = 2𝑚2… (b). From (a) and (b) we have, 

 2𝑞2 = 4𝑚2 ⇒ 𝑞2 = 2𝑚2 which is even. Therefore, 𝑞2 is even 

 ⇒ 𝑞 is also even number. i. e. 𝑞 = 2𝑛, 𝑓𝑜𝑟 𝑠𝑜𝑚𝑒 𝑛 ∈ ℤ …. (**).  

Now from (*) and (**) we see that 𝑝 𝑎𝑛𝑑 𝑞 both have 2 as a common factor. i. e. (𝑝, 𝑞) =
2, which is a contradiction to our assumption that (𝑝, 𝑞) = 1. Thus, there does not exists 
a rational number whose square is 2.   

 

2. Prove that (𝑖)√21    is not rational numbers.  

Solution: suppose √21 is a rational number. 

 ∴
𝑎

𝑏
= √21 , 𝑎, 𝑏 ∈ ℤ 𝑏 ≠ 0 𝑎𝑛𝑑 (𝑎, 𝑏) = 1. 

 
𝑎2

𝑏2 = 21 ⇒ 𝑎2 = 21. 𝑏2 ⇒ 21 𝑑𝑖𝑣𝑖𝑑𝑒𝑠 𝑎2.   

Now, the factors of 21 are 1, 3, 7. Let us consider a factor 3 of 21. 

 As 3 divides 21𝑏2 ∴ 3 divides  𝑎2. Therefore, 3 divides 𝑎 also.  

⇒ 𝑎 = 3𝑐, 𝑓𝑜𝑟 𝑠𝑜𝑚𝑒 𝑐 𝑎𝑛 𝑖𝑛𝑡𝑒𝑔𝑒𝑟 … (a) ∴ 21𝑏2 = 9𝑐2 ∴ 7𝑏2 = 3𝑐2 

∴ 3 𝑑𝑖𝑣𝑖𝑑𝑒𝑠 7𝑏2 ∴ 3 𝑑𝑖𝑣𝑖𝑑𝑒𝑠 𝑏2 ⇒ 3 𝑑𝑖𝑣𝑖𝑑𝑒𝑠 𝑏. 

⇒ 𝑏 = 3𝑑, 𝑓𝑜𝑟 𝑠𝑜𝑚𝑒 𝑑 𝑎𝑛 𝑖𝑛𝑡𝑒𝑔𝑒𝑟. …  (b).  

From (a) and (b) we see that 3 is a common factor of both a and b.  

i.e. (a, b) =3, a contradiction to the fact that (a, b) = 1.  

Thus, √21 is not a rational number. 
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3. Prove that √3 + √7 is not a rational number.  

Solution:  

On the contrary suppose that √3 + √7 is a rational number. 

 
𝑝

𝑞
= √3 + √7 ; 𝑝, 𝑞 ∈ ℤ, 𝑞 ≠ 0 𝑎𝑛𝑑 (𝑝, 𝑞) = 1.  

 
𝑝2

𝑞2
= (√3 + √7)

2
⇒ 𝑝2 = (10 + 2√21)𝑞2 = 2(5 + √21)𝑞2 ….. (i)      

This shows that 2 divides 𝑝2 ⇒ 2 𝑑𝑖𝑣𝑖𝑑𝑒𝑠 𝑝. ∴ 𝑝 = 2𝑚, 𝑓𝑜𝑟 𝑠𝑜𝑚𝑒 𝑚 ∈ ℤ. 

∴ 𝑝2 = 4𝑚2…. (ii). From (i) and (ii) we have, 

 2(5 + √21)𝑞2 = 4𝑚2 ⇒ (5 + √21)𝑞2 = 2𝑚2 

⇒ 2 𝑑𝑖𝑣𝑖𝑑𝑒𝑠(5 + √21)𝑞2 ⇒ 2 𝑑𝑖𝑣𝑖𝑑𝑒𝑠(5 + √21) 𝑜𝑟 𝑞2.  

𝐵𝑢𝑡 2 𝑑𝑖𝑣𝑖𝑑𝑒𝑠(5 + √21) is not possible. ∴ 2 𝑑𝑖𝑣𝑖𝑑𝑒𝑠 𝑞2 ⇒ 2 𝑑𝑖𝑣𝑖𝑑𝑒𝑠 𝑞. 

𝐻𝑒𝑛𝑐𝑒, 𝑡𝑎𝑘𝑒 𝑞 = 2𝑛, 𝑓𝑜𝑟 𝑠𝑜𝑚𝑒 𝑛 ∈ ℤ …. (iii).  

From (ii) and (iii) we see that 2 is a common factor between 𝑝 𝑎𝑛𝑑 𝑞.  

i. e. (𝑝, 𝑞) = 2, a contradiction to  (𝑝, 𝑞) = 1.  

Thus, √3 + √7 is not a rational number.  

4. Find the rational number 𝑟 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡  

        (𝑖) √2 < 𝑟 < √3 (𝑖𝑖) √3 < 𝑟 < √5 (𝑖𝑖𝑖) √10 < 𝑟 < √11.  

Solution: 

(i)  Let √2 < 𝑟 < √3 ∴ 2 < 𝑟2 < 3. Here, 𝑟2 𝑐𝑎𝑛 𝑏𝑒 2.25  

⇒ 𝑟 = 1.5 =
3

2
 . {Note that this is not unique rational no. between √2 

and√3}  ∴ √2 <
3

2
< √3.  

(ii) Let √3 < 𝑟 < √5 ∴ 3 < 𝑟2 < 5. Here, 𝑟2 𝑐𝑎𝑛 𝑏𝑒 2.56  

⇒ 𝑟 = 1.6 =
5

3
 . {Note that this is not unique rational no. between √3 and√5. 

∴ √3 <
5

3
< √5.  

(iii) Let √10 < 𝑟 < √11 ∴ 10 < 𝑟2 < 11. Here, 𝑟2 𝑐𝑎𝑛 𝑏𝑒 10.24  

⇒ 𝑟 = 3.2 =
16

5
 . {Note that this is not unique rational no. between √10 

and√11. ∴ √10 <
16

5
< √11. 
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5. Find the Sup. and Inf. of the set 𝑆 = {
1

𝑛
: 𝑛 ∈ ℕ}.  

Solution: We know that 1 ≤ 𝑛 ∴ 0 <
1

𝑛
≤ 1, ∀𝑛 ∈ ℕ.  

Hence, 0 is the lower bound of S and 1 is the upper bound of S.  

Therefore, Sup(S) =1 and Inf (S) = 0.  

 

6. Find the Sup. and Inf. of the following sets 

(a) 𝐴 = {𝑥 ∈ ℝ: 2𝑥 + 5 > 0} 

(b) 𝐵 = {𝑥 ∈ ℝ: 𝑥 + 2 > 𝑥2}.  

Solution:  

(a) For 𝑥 ∈ ℝ, 𝐴 = {𝑥 ∈ ℝ: 2𝑥 + 5 > 0} 

     = {𝑥 ∈ ℝ: 𝑥 > −
5

2
}.  

 Therefore, 𝐼𝑛𝑓(𝐴) = −
5

2
 and Sup (A) does not exist.   

(b) We have, 𝐵 = {𝑥 ∈ ℝ: 𝑥 + 2 > 𝑥2} 

   = {𝑥 ∈ ℝ: 𝑥2 − 𝑥 − 2 < 0}  

   = {𝑥 ∈ ℝ: (𝑥 − 2)(𝑥 + 1) < 0}  

   = {𝑥 ∈ ℝ: −1 < 𝑥 < 2}. 

Therefore, 𝐼𝑛𝑓(𝐵) = −1 𝑎𝑛𝑑 𝑆𝑢𝑝(𝐵) = 2.  

7. Find the Sup. and Inf. for the sets, if exists:  

(i) {-1, 3, 2, 5, 7, 9, 12}. (ii) {−1, −
1

2
, −

1

3
, −

1

4
, … }. (iii) {

(−1)𝑛

𝑛
: 𝑛 ∈ ℕ}.  

(iv) {1 +
(−1)𝑛

𝑛
: 𝑛 ∈ ℕ}. (v) {(

1

2
)

𝑛

: 𝑛 ∈ ℕ}. (vi) {3 + (
2

3
)

𝑛

: 𝑛 ∈ ℕ}.  

Solution: 

 (i) Sup = 12, Inf. = -1. (ii) Sup = 0, Inf. = -1.  

(iii)Sup = 1/2, Inf. = -1.  (iv) Sup = 3/2, Inf. = 0.   

(v) Sup =1/2, Inf. = 0.  (vi) Sup = 11/3, Inf. = 3.  
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 Neighborhood of a Point/ real number:  

   If 𝑎 ∈ ℝ 𝑎𝑛𝑑 𝛿 > 0 be a real number. Then 𝛿- nbd of a real number 

𝑎; 𝑑𝑒𝑛𝑜𝑡𝑒𝑑 𝑏𝑦 𝑁𝛿(𝑎)𝑜𝑟 𝑁(𝑎, 𝛿) is defined as- 

𝑵𝜹(𝒂) = 𝑵(𝒂, 𝜹) = {𝒙 ∈ ℝ ∶  |𝒙 − 𝒂| < 𝛿}. 

𝑖. 𝑒. 𝑥 ∈ 𝑁𝛿(𝑎) ⇔ |𝑥 − 𝑎| < 𝛿  

   ⇔ −𝛿 < 𝑥 − 𝑎 < 𝛿  

   ⇔ 𝑎 − 𝛿 < 𝑥 < 𝑎 + 𝛿  

   ⇔ (𝑎 − 𝛿, 𝑎 + 𝛿).  

 Deleted Neighborhood of a point/ real number:  

       Let 𝑎 ∈ ℝ 𝑎𝑛𝑑 𝛿 > 0 be a real number. Then 𝛿- nbd of a real number 

𝑎; 𝑑𝑒𝑛𝑜𝑡𝑒𝑑 𝑏𝑦 𝑁𝛿
′ (𝑎)𝑜𝑟 𝑁′(𝑎, 𝛿) is defined as- 

𝑵′
𝜹(𝒂) = 𝑵′(𝒂, 𝜹) = {𝒙 ∈ ℝ ∶  |𝒙 − 𝒂| < 𝛿, 𝑥 ≠ 𝑎}. 

𝑖. 𝑒. 𝑥 ∈ 𝑁′
𝛿(𝑎) ⇔ |𝑥 − 𝑎| < 𝛿, 𝑥 ≠ 𝑎  

   ⇔ −𝛿 < 𝑥 − 𝑎 < 𝛿, 𝑥 ≠ 𝑎  

   ⇔ 𝑎 − 𝛿 < 𝑥 < 𝑎 + 𝛿, 𝑥 ≠ 𝑎  

   ⇔ (𝑎 − 𝛿, 𝑎) ∪ (𝑎, 𝑎 + 𝛿).  

 

Illustration: Find 𝑁𝛿(𝑎) 𝑎𝑛𝑑 𝑁′
𝛿(𝑎), 𝑖𝑓 𝑎 = −3 𝑎𝑛𝑑 𝛿 = 2.  

Solution:  

                Here, given that  𝑎 = −3 𝑎𝑛𝑑 𝛿 = 2.  

𝑁𝛿(𝑎) = 𝑁(𝑎, 𝛿) = {𝑥 ∈ ℝ ∶  |𝑥 − 𝑎| < 𝛿}  

∴ 𝑁2(−3) = 𝑁(−3, 2) = {𝑥 ∈ ℝ ∶  |𝑥 − (−3)| < 2}  

                                         = −2 < 𝑥 − (−3) < 2 

                = −5 < 𝑥 < −1  

   = (−5, −1).  
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 𝑁′
𝛿(𝑎) = 𝑁′(𝑎, 𝛿) = {𝑥 ∈ ℝ ∶  |𝑥 − 𝑎| < 𝛿, 𝑥 ≠ 𝑎}.  

∴ 𝑁′
2(−3) = 𝑁′(−3, 2) = {𝑥 ∈ ℝ ∶  |𝑥 − (−3)| < 2, 𝑥 ≠ −3}  

     = −2 < 𝑥 − (−3) < 2 

     = −5 < 𝑥 < −1 

     = (−5, −3) ∪ (−3, −1).  

------------------------------------------------------------------------------------------------- 

Exercise 

1. Draw the graph of the function 𝑓(𝑥) = |𝑥 − 2| 

2. If 𝑥 and 𝑦 are two real numbers then prove that |𝑥 + 𝑦|  ≤  |𝑥| + |𝑦|. 

3. Draw the graph of the function 𝑓(𝑥) = (𝑥 + 1)2. State the intervals in which it is 

increasing and decreasing. 

4. State the order axioms of real numbers. 

5. Find the rational number between   (𝑖) √5  & √6  (𝑖𝑖) √6  & √7 

6. For any two distinct, positive real numbers 𝑎 and 𝑏, prove that √𝑎𝑏 <
1

2
 (𝑎 + 𝑏). 

7. Solve |
3−𝑥

2+𝑥
| < 1  ∀ 𝑥 ∈  ℝ , 𝑥 ≠ −2.  

8. State the field axioms of set of real numbers. 

9. Find all real numbers 𝑥 that satisfy the inequality |
2−𝑥

3+𝑥
| < 1 , 𝑥 ≠ −3. 

10. Determine the set 𝐴 = {𝑥 ∈ ℝ: |𝑥 − 1| < 0.5}. 

11. Find all real numbers 𝑥 that satisfy the inequality |𝑥2 − 1| ≤ 3. 

12. State the completeness property of ℝ. 

13. Determine the set 𝐴 = {𝑥 ∈ ℝ: |2𝑥 − 3| < 5}. 

14. If 𝑥 ∈ ℝ then show that there exists 𝑛0 ∈ ℕ such that 𝑥 < 𝑛0. 

15. Show that between any two distinct real numbers there exists a  

            rational number. 

16. Find l. u. b. and g. l. b. for the set 𝑆 = {
(−1)𝑛

𝑛
: 𝑛 ∈ ℕ}. 

17. Find Infimum and Supremum of the set 𝑆 = {1 −
(−1)𝑛

𝑛
: 𝑛 ∈ ℕ}. 

18. Determine the set 𝐴 = {𝑥 ∈ ℝ ∶ 𝑥2 > 3𝑥 + 4}. 

19. State order axioms for set of real numbers. 

20. Prove that for 𝑥, 𝑦 ∈ ℝ, ||𝑥| − |𝑦|| ≤ |𝑥 − 𝑦|. 

21. Find all real numbers 𝑥 that satisfy the inequality 

                           |𝑥| + |𝑥 + 1| < 2. 

22. Solve the inequality |3𝑥 + 4| < |𝑥 + 2|  

23. Find the greatest lower bound and least upper bound of the set  

                            𝑆 = {(−1)𝑛 +
𝑛+1

𝑛+2
∶ 𝑛 ∈ ℕ}. 
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24. Find the greatest lower bound and least upper bound of the set  

                                    𝑆 = {−
1

3
,

7

4
, −

1

5
,

11

6
, −

1

7
, … }. 

25. Solve the inequality 4 − 7𝑥 < 3𝑥 − 16. 

26. Find the Supremum and Infimum of the set 𝑆 = {
𝑛−1

𝑛
∶ 𝑛 ∈ ℕ}. 

27. If 𝑥 is positive real number then prove that for any real number  

            𝑦 there exists a natural number 𝑛 such that 𝑛𝑥 > 𝑦. 

28. Find the Supremum and Infimum of the set 𝑆 = {1 −
1

𝑛
: 𝑛 ∈ ℕ}. 

29. Define absolute value of areal number. If 𝑎 ≥ 0 then prove that  

                   |𝑥| ≤ 𝑎  if and only if −𝑎 ≤ 𝑥 ≤ 𝑎. 

30. For 𝑥 and 𝑦 any two real numbers, prove that 

                  |𝑥 + 𝑦|  ≤  |𝑥| + |𝑦|. Hence prove that |𝑥 − 𝑦|  ≤  |𝑥| + |𝑦|. 

31. Determine the set 𝐴 = {𝑥 ∈ ℝ ∶ 12𝑥 + 3 < 7}. 

32. Find the Supremum and Infimum of the set A, if exist, where 

                            𝐴 = {−1, 3, 2, 0, 9, 12}. 

33. Find the domain and range of the function 𝑦 = √25 − 𝑥2 . 

34. Sketch the graph of the function 𝑓(𝑥) = 𝑥2, 𝑥 ∈ [−1, 1]. 

35. For all 𝑎, 𝑏 in ℝ prove that |𝑎 + 𝑏| ≤ |𝑎| + |𝑏| . 

36. Find all 𝑥 ∈ ℝ that satisfy the inequality |4𝑥 + 5| ≤ 19 . 

37. Find Supremum and Infimum of the set {(
1

2
)

𝑛

: 𝑛 ∈ ℕ}. 

38. If 𝑐 ∈ ℝ 𝑎𝑛𝑑 0 < 𝑐 < 1 then show that 0 < 𝑐2 < 𝑐 < 1. 

39. State the density theorem. 

40. Find the range of the function 𝑓(𝑥) = 𝑥2 + 1, 𝑥 ∈ ℝ. 

41. Find all real numbers that satisfies the inequality |𝑥 − 1| < |𝑥| . 

42. Find the Supremum and Infimum of the set 

                              {𝑥 ∈ ℝ ∶ 𝑥 + 2 > 𝑥2}. 

43. Determine the set 𝐴 = {𝑥 ∈ ℝ ∶ 𝑥 <
1

𝑥
 , 𝑥 > 0}. 

44. Find the domain of the function (𝑥) =
1

𝑥−3
 . 

45. State and prove the triangle inequality for real numbers. Hence  

            prove that |𝑎 − 𝑏| ≥ ||𝑎| + |𝑏||, for all 𝑎, 𝑏 ∈ ℝ . 

46. Draw the graph of the function 𝑓(𝑥) = 3𝑥2 − 7.  

 

-$$$$$$$$$ - 
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Unit 4: Limits and Continuity 

Introduction: 

In this chapter, we are going to have revision of function, domain and range of a 

function along with some of the example. Define cluster point, deleted neighborhood of 

a point, the limit of a function of one variable. Examples of function, properties, 

theorems. Define the continuity of a function at a point and on an interval. Some 

theorems and examples on continuity. 

Definition: Function- A function from a set A to set B is a relation which associates to 

every element in set A unique element in set B. It is denoted by 𝑓: 𝐴 → 𝐵.  

The set A is called domain and the second set B is called co-domain of the function.  

            More clearly, domain of a function is the set of all values of the variable in Set A 

for which the function will be well defined.  

Range of a function: If 𝑓: 𝐴 → 𝐵 is a function then the set denoted by 𝑅(𝑓); defined as 

𝑅(𝑓) = {𝑓(𝑥): ∀ 𝑥 ∈ 𝐴} is called range of function 𝑓.  

           Note that the domain assumed to be a subset of set of Real numbers which is 

called as Natural domain.  

Examples:  

Find the natural domain for each of the following function  

(𝑖) 𝑓(𝑥) = 𝑥2 + 2  (𝑖𝑖) 𝑓(𝑥) =
1

𝑥−3
  (𝑖𝑖𝑖) 𝑔(𝑥) = √1 + 6𝑥   (𝑖𝑣) ℎ(𝑥) = √1 − 𝑥2   

Solution: (i) Here, given function 𝑓(𝑥) = 𝑥2 + 2  is well defined for all values of x to be 

real numbers. Therefore, the domain of function is set ℝ i. e. (−∞,∞).  

(ii) Here, the given function 𝑓(𝑥) =
1

𝑥−3
 is not defined at 𝑥 = 3.  

      Therefore, 𝐷(𝑓) = { 𝑥 ∈ ℝ: 𝑥 ≠ 3}.  

(iii) In this case for 𝑔(𝑥) = √1 + 6𝑥, we know that square root exist if and only if the 

quantity under square root is non – negative. 

     𝐷(𝑔) = {𝑥 ∈ ℝ: 1 + 6𝑥 ≥ 0} = {𝑥 ∈ ℝ: 𝑥 ≥ −
1

6
} = [−

1

6
, ∞).  

(iv) Here also, 

       𝐷(ℎ) = {𝑥 ∈ ℝ: 1 − 𝑥2 ≥ 0} = {𝑥 ∈ ℝ: 1 ≥ 𝑥2 ≥ 0, }.   

                                                             = {𝑥 ∈ ℝ:−1 ≤ 𝑥 ≤ 1 } = [−1, 1] 
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 Rule to find the range of a function:  

Step 1: Put 𝑦 = 𝑓(𝑥).  

Step 2: Solve the relation in x and y for x, instead of y.  

Step 3: The range is the set of all real numbers y that can be solved for x.  

Examples:  

1. For the following function, find the range  

(𝑖) 𝑓(𝑥) = 𝑥2 + 2 (𝑖𝑖)𝑓(𝑥) =
1

𝑥−3
 (𝑖𝑖𝑖)𝑔(𝑥) = √1 + 6𝑥 (𝑖𝑣) ℎ(𝑥) = √1 − 𝑥2   

Solution:  

(i) Put 𝑦 = 𝑓(𝑥) = 𝑥2 + 2 

                ⇒ 𝑥2 = 𝑦 − 2 ∴ 𝑥 = ±√𝑦 − 2 .  

 Hence, 𝑅(𝑓) = {𝑦 ∈ ℝ: 𝑦 − 2 ≥ 0} = [2,∞).  

(ii) Let 𝑦 = 𝑓(𝑥) =
1

𝑥−3
 ⇒ 𝑥 =

1

𝑦
+ 3.  

Thus, 𝑅(𝑓) = { 𝑦 ∈ ℝ: 𝑦 ≠ 0} = ℝ − {0}.  

(iii) Let 𝑦 = 𝑔(𝑥) = √1 + 6𝑥  

               ⇒ 𝑦2 = 1 + 6𝑥 ∴ 𝑥 =
𝑦2−1

6
, 𝑦2 ≥ 0.  

Therefore, 𝑅(𝑔) = {𝑦 ∈ ℝ: 𝑦2 ≥ 0} = (−∞,∞).  

(iv) Let 𝑦 = ℎ(𝑥) = √1 − 𝑥2 

       ⇒ 𝑦2 = 1 − 𝑥2, 𝑦 ≥ 0   

       ∴ 𝑥2 = 1 − 𝑦2 ∴ 𝑥 = ±√1 − 𝑦2, 𝑦 ≥ 0.  

Hence, 𝑅(ℎ) = {𝑦 ∈ ℝ: 𝑦2 ≤ 1} = [0, 1].  

 

 

 

 



3 
 

2. Find the domain of the function𝑓(𝑥) = √𝑥 + 7 − √𝑥2 + 2𝑥 − 15.  

Solution: We have 𝑓(𝑥) = √𝑥 + 7 − √𝑥2 + 2𝑥 − 15.  

Here, it is defined iff 𝑥 + 7 ≥ 0 𝑎𝑛𝑑 𝑥2 + 2𝑥 − 15 ≥ 0.  

∴ 𝑥 ≥ −7 𝑎𝑛𝑑 (𝑥 + 5)(𝑥 − 3) ≥ 0.  

(𝑖) 𝑥 ≥ −7 𝑎𝑛𝑑 (𝑥 + 5) ≥ 0, (𝑥 − 3) ≥ 0   

(𝑖𝑖) 𝑥 ≥ −7 𝑎𝑛𝑑 (𝑥 + 5) ≤ 0, (𝑥 − 3) ≤ 0.  ⇒ 𝑥 ≥ −7 𝑎𝑛𝑑 𝑥 ≥ 3 𝑜𝑟 𝑥 ≤ −5.  

 Thus, 𝐷(𝑓) = { 𝑥 ∈ ℝ: 𝑥 ≥ −7 𝑎𝑛𝑑 (𝑥 ≥ 3 𝑜𝑟 𝑥 ≤ −5)} 

                      = {𝑥 ∈ ℝ: 𝑥 ≥ −7 𝑜𝑟 − 7 ≤ 𝑥 ≤ −5}  

                      = [3,∞) ∪ [−7,−5].  

3. Find the range of the function 𝑓(𝑥) =
2𝑥+1

𝑥2+1
 .  

Solution: Let 𝑦 = 𝑓(𝑥) =
2𝑥+1

𝑥2+1
  ∴ 𝑦𝑥2 + 𝑦 = 2𝑥 + 1  

∴ 𝑦𝑥2 − 2𝑥 + (𝑦 − 𝑥) = 0; Which is a quadratic equation in x with ‘y’ being coefficient.  

𝑥 =
(2±√4−4𝑦(𝑦−1))

2𝑦
 , 𝑦 ≠ 0 and  𝑥 =

(1±√1−𝑦2+𝑦)

𝑦
 , 𝑦 ≠ 0.  

This can be solved if and only if  1 − 𝑦2 + 𝑦 ≥ 0 

⇒ 𝑦2 − 𝑦 + 1 ≤ 0 ⇒ (𝑦 −
1−√5

2
) (𝑦 −

1+√5

2
) ≤ 0.  

Thus, 𝑅(𝑓) = {𝑦 ∈ ℝ: 𝑦2 − 𝑦 − 1 ≤ 0} = [
1−√5

2
 ,
1+√5

2
].  

Absolute Value function:  

The absolute value function 𝑓: ℝ → ℝ is defined by  

                                               𝑓(𝑥) = {
𝑥,   𝑥 > 0
0,    𝑥 = 0
−𝑥,   𝑥 < 0.

    

The number |𝑎| is called absolute value of a. The range of this function is [0,∞).  

Piecewise Function: Piecewise functions are common in mathematics, physics, and 

engineering to model situations where a process or relationship changes over different 

intervals.  
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Step function: It is a piecewise function where it has jumps from one value to another 

value. i. e. A stepwise function, also known as a step function, is a piecewise function 

that remains constant within each interval of its domain. 

Increasing and decreasing function:  

Let 𝑓 be a function defined on I = [a, b]. Let 𝑥1, 𝑥2 ∈ [𝑎, 𝑏]  

(𝑖) 𝑓 is said to be increasing on I if 𝑓(𝑥1) > 𝑓(𝑥2), 𝑥1 > 𝑥2.  

(𝑖𝑖) 𝑓 is said to be decreasing on I if 𝑓(𝑥1) < 𝑓(𝑥2), 𝑥1 > 𝑥2.  

 

Even and Odd function: 

A function 𝑦 = 𝑓(𝑥) is called Even function if 𝑓(𝑥) = 𝑓(−𝑥) and Odd function if 

𝑓(−𝑥) = −𝑓(𝑥),  for every 𝑥 in domain of the function.  

 Note that the graph of the Even function is symmetric about the y – axis and the 

graph of the Odd function is symmetric about the x – axis.   

 The sum or difference of two even functions is even. The product of two even 

functions is even. 

 The sum or difference of two odd functions is odd. The product of two odd 

functions is even, while the product of an even function and an odd function is odd. 

 A function can be both even and odd only if it is the zero function, f(x)=0 for all 𝑥 

 A function can be neither even nor odd. For example, 𝑓(𝑥) = 𝑥 + 1 does not 

satisfy the conditions for either evenness or oddness. 

 

Limit of a function 

Definition: Cluster Point: - 

                                                   Let  𝐴 ⊆ ℝ. A point c ∈ ℝ is a cluster point of A if for every 

𝛿 > 0 there exist at least one point 𝑥 ∈ 𝐴, 𝑥 ≠ 𝑐 𝑠. 𝑡. |𝑥 − 𝑐| < 𝛿.  

 A point c is said to be cluster point of the set A if every deleted 𝛿- neighborhood 

𝑁′𝛿(𝑐) = (𝑐 − 𝛿, 𝑐 + 𝛿) of c contains at least one point of A. i. e. 𝑁𝛿
′(𝑐) ∩ 𝐴 ≠ ∅.  

Remark:  

 The point c may or may not be in A. 

 If a function is discontinuous at a cluster point, it means the limit does not exist, 

or it does not equal the function's value at that point. 

 Cluster points, also known as limit points or accumulation points, play an 

important role in the study of limits and continuity in real analysis and topology. 
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Examples:  

1. The set of natural numbers has no cluster points.  

Solution: The set of natural numbers has no cluster points because there is no real 

number around which the natural numbers accumulate; each natural number is isolated 

with gaps between them. Consequently, no point has natural numbers arbitrarily close 

to it. 

2. Finite set has no cluster points.  

Solution: A finite set has no cluster points because there are only a limited number of 

isolated points, with no point having other points arbitrarily close to it. Cluster points 

require an infinite accumulation of points around them. 

3. Let A = {1, 2} then A has no limit points.  

Solution: Take 𝛿 =
1

2
 , 𝑐 = 1.  𝑇ℎ𝑒𝑛 𝑁𝛿

′(𝑐) = (𝑐 − 𝛿, 𝑐 + 𝛿) − {𝑐} = (
1

2
,
3

2
) − {1}.  

∴ 𝑁𝛿
′(𝑐) ∩ 𝐴 = [(

1

2
,
3

2
) − {1}] ∩ {1,2} = ∅.  

 Therefore, 1 is not limit point of A. Similarly, 2 is also not limit point of A.  

4. Let A = (1, 2) then 1 and 2 are limit points of A.  

Solution: Take 𝛿 =
1

2
 , 𝑐 = 1. 𝑇ℎ𝑒𝑛 𝑁𝛿

′(𝑐) = (𝑐 − 𝛿, 𝑐 + 𝛿) − {𝑐} 

                                                                               = (
1

2
,
3

2
) − {1}.  

∴ 𝑁𝛿
′(𝑐) ∩ 𝐴 = [(

1

2
,
3

2
) − {1}] ∩ (1,2) ≠ ∅.  

Therefore, 1 is a limit point of A. Similarly, 2 is limit point of A.  

                  Here, every point of A is a limit point of A. Except the end points 1 and 2 are 

the limit points of A which does not in A. 

Deleted neighborhood of a point- Let 𝑐 ∈ ℝ 𝑎𝑛𝑑 𝛿 > 0 be any positive real number. Then 

deleted neighborhood of a point c, denoted by 𝑁𝛿
′(𝑐)𝑜𝑟 𝑁′(𝑐, 𝛿); is defined as 

 𝑁𝛿
′(𝑐) = 𝑁′(𝑐, 𝛿) = {𝑥 ∈ ℝ: 0 < |𝑥 − 𝑐| < 𝛿} 

                                   = {𝑥 ∈ ℝ: 𝑐 − 𝛿 < 𝑥 < 𝑐 + 𝛿, 𝑥 ≠ 𝑐} 

                                   = {𝑥 ∈ ℝ: 𝑐 − 𝛿 < 𝑥 < 𝑐 𝑜𝑟 𝑐 < 𝑥 < 𝑐 + 𝛿}  

                                   = {𝑥 ∈ ℝ: 𝑐 − 𝛿 < 𝑥 < 𝑐} ∪ {𝑥 ∈ ℝ: 𝑐 < 𝑥 < 𝑐 + 𝛿}   

                                   = (𝑐 − 𝛿, 𝑐 + 𝛿) − {𝑐}.  
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Example: Find deleted 3 nbd. of 1.  

Solution: Here, 𝛿 = 3 𝑎𝑛𝑑 𝑐 = 1.  

∴ 𝑁′(𝑐, 𝛿) = (𝑐 − 𝛿, 𝑐 + 𝛿) − {𝑐} = (1 − 3, 1) ∪ (1, 1 + 3) 

                                                                                              = (−2, 1) ∪ (1, 4) 

                                                                                              = (−2, 4) − {1}. 

 

Definition: Limit of a function- 

                                Let 𝑓(𝑥) be a function defined on A⊆ℝ and let c be a cluster point of A. 

A number 𝑙 ∈ ℝ is called a limit of function 𝑓(𝑥) at 𝑥 = 𝑐 if  for given 𝜀 > 0 ∃ 𝛿 > 0 𝑠. 𝑡. 

                               𝑥 ∈ 𝐴, 0 < |𝑥 − 𝑐| < 𝛿 ⇒ |𝑓(𝑥) − 𝑙| < 𝜀. 

𝑊𝑒 𝑤𝑖𝑙𝑙 𝑤𝑟𝑖𝑡𝑒 𝑡ℎ𝑖𝑠 𝑎𝑠 lim
𝑥→𝑐

𝑓(𝑥) = 𝑙.  

Remark:   

1. The value of 𝛿 depends on 𝜀.  

2. The inequality 0 < |𝑥 − 𝑐|is equivalent to saying that 𝑥 ≠ 𝑐.  

3. lim
𝑥→𝑐

𝑓(𝑥) = 𝑙 is equivalent to  

      (a) 𝑓(𝑥) Approaches to 𝑙 as 𝑥 approaches to c.  

      (b) 𝑓(𝑥) → 𝑙 → 𝑎𝑠 𝑥 → 𝑐.  

4. If limit of 𝑓 𝑎𝑡 𝑥 = 𝑐 does not exists then we say that 𝑓(𝑥) diverges at 𝑥 = 𝑐.  

 

Theorem 1: If 𝑓: 𝐴 → ℝ and c is a cluster point of A then 𝑓(𝑥) has only one limit at c.  

                                                                                         OR                                                                                                                                                                                                

Show that limit of a function is unique if it exists. 

Proof: Let if possible 𝑙1𝑎𝑛𝑑 𝑙2 be two limits of a function 𝑓(𝑥) 𝑎𝑡 𝑥 = 𝑐.  

By the definition of limit, for given 𝜀 > 0, ∃ 𝛿1, 𝛿2 > 0 𝑠. 𝑡. 

𝑥 ∈ 𝐴, 0 < |𝑥 − 𝑐| < 𝛿1 ⇒ |𝑓(𝑥) − 𝑙1| <
𝜀

2
 ………… (1)  and  

𝑥 ∈ 𝐴, 0 < |𝑥 − 𝑐| < 𝛿2 ⇒ |𝑓(𝑥) − 𝑙2| <
𝜀

2
 ………… (2). 

Let  𝛿 = min {𝛿1, 𝛿2} then both eqn (1) and eqn (2) holds whenever  0 < |𝑥 − 𝑐| < 𝛿.  
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Claim: we need to show that 𝑙1 = 𝑙2   

For consider, 

            |𝑙1 − 𝑙2| = |(𝑓(𝑥) − 𝑙1) − (𝑓(𝑥) − 𝑙2)| ≤ |𝑓(𝑥) − 𝑙1| + |𝑓(𝑥) − 𝑙2| 

                                                                                     <
𝜀

2
+

𝜀

2
= 𝜀.  

                        Therefore, whenever 0 < |𝑥 − 𝑐| < 𝛿 𝑎𝑛𝑑 𝑥 ∈ 𝐴,𝑤𝑒 ℎ𝑎𝑣𝑒 |𝑙1 − 𝑙2| < 𝜀. 

Since 𝜀 > 0 is arbitrary, this is not possible. Therefore, we have  𝑙1 − 𝑙2 = 0 ⇒ 𝑙1 = 𝑙2. 

This shows that limit of a function if exist is unique.   

Examples: Using the definition, show that 

 (𝑖) lim
𝑥→1

(𝑥2 + 1) = 2.  (𝑖𝑖) lim
𝑥→−1

(
𝑥+5

2𝑥+3
) = 4  

 (𝑖𝑖𝑖) lim
𝑥→1

𝑥

1+𝑥
=

1

2
  (𝑖𝑣) lim

𝑥→2
(𝑥2 + 4𝑥) = 12.  

Solution:  

(i) Let 𝑓(𝑥) = 𝑥2 + 1,   ℎ𝑒𝑟𝑒  𝑙 = 2 , 𝑐 = 1.  

We want to make |𝑓(𝑥) − 2| < 𝜀 by taking 𝑥 sufficiently close to c = 1.  

Consider the deleted 𝛿-nbd of c = 1. (Take  𝛿 = 1).  

Say  𝑆 = (𝑐 − 𝛿, 𝑐 + 𝛿) − {1} = (0, 2) − {1}. 

𝐻𝑒𝑟𝑒, |𝑥 − 𝑐| < 𝛿 𝑚𝑒𝑎𝑛𝑠 |𝑥 − 1| < 1……….. (1)  

Consider, 

 |𝑓(𝑥) − 2| = |𝑥2 + 1 − 2| = |𝑥2 − 1| = |𝑥 + 1||𝑥 − 1|  ………. *  

Now, in S,  𝑥 > 0 ⇒ 𝑥 + 1 < 3 ⇒ |𝑥 + 1| < 3……….. (2)  

With this eqn * becomes, |𝑓(𝑥) − 2| < 3|𝑥 − 1| . 

𝐵𝑢𝑡 𝑤𝑒 𝑛𝑒𝑒𝑑     3|𝑥 − 1| < 𝜀 ⇒ |𝑥 − 1| <
𝜀

3
………… (3).  

From eqn (1) and eqn (3), we will choose 𝛿 = min {1,
𝜀

3
}.  

Then |𝑓(𝑥) − 2| < 𝜀,𝑤ℎ𝑒𝑛𝑒𝑣𝑒𝑟 0 < |𝑥 − 1| < 𝛿 ⇒ lim
𝑥→1

(𝑥2 + 1) = 2.  

 

 

 



8 
 

(ii) Let 𝑓(𝑥) =
𝑥+5

2𝑥+3
,   ℎ𝑒𝑟𝑒  𝑙 = 4 , 𝑐 = −1.  

We want to make |𝑓(𝑥) − 4| < 𝜀 by taking 𝑥 sufficiently close to c = -1.  

Consider the deleted 𝛿-nbd of c = -1. (Take  𝛿 = 1).  

Say  𝑆 = (𝑐 − 𝛿, 𝑐 + 𝛿) − {−1} = (−2, 0) − {−1}. 

𝐻𝑒𝑟𝑒, |𝑥 − 𝑐| < 𝛿 𝑚𝑒𝑎𝑛𝑠 |𝑥 − (−1)| < 1…. (1)  

Consider, 

 |𝑓(𝑥) − 4| = |
𝑥+5

2𝑥+3
− 4| = |

𝑥+5−4(2𝑥+3)

2𝑥+3
| = |

−7𝑥−7

2𝑥+3
| =

7

2
.
|𝑥+1|

|𝑥+
3

2
|
  ………. *  

Now, in S,  𝑥 > −2 ⇒ 2𝑥 + 3 > 1 ⇒
1

2𝑥+3
< 1 ∴

1

|𝑥+
3

2
|
< 4 ………. (2)  

With this eqn * becomes, |𝑓(𝑥) − 4| <
7

2
. 4|𝑥 + 1| = 14|𝑥 + 1| . 

𝐵𝑢𝑡 𝑤𝑒 𝑛𝑒𝑒𝑑    14|𝑥 + 1| < 𝜀 ⇒ |𝑥 + 1| <
𝜀

14
………. (3).  

From eqn (1) and eqn (3), we will choose 𝛿 = min {1,
𝜀

14
}.  

Then |𝑓(𝑥) − 4| < 𝜀,𝑤ℎ𝑒𝑛𝑒𝑣𝑒𝑟 0 < |𝑥 + 1| < 𝛿 

           ⇒ lim
𝑥→−1

𝑥+5

2𝑥+3
= 4.   

(iii) Let 𝑓(𝑥) =
𝑥

1+𝑥
,   ℎ𝑒𝑟𝑒  𝑙 =

1

2
 , 𝑐 = 1.  

We want to make |𝑓(𝑥) −
1

2
| < 𝜀 by taking x sufficiently close to c = 1.  

Consider the deleted 𝛿-nbd of c = 1. (Take 𝛿 = 1). 

Say 𝑆 = (𝑐 − 𝛿, 𝑐 + 𝛿) − {1} = (0,2) − {1}. 

𝐻𝑒𝑟𝑒, |𝑥 − 𝑐| < 𝛿 𝑚𝑒𝑎𝑛𝑠 |𝑥 − 1| < 1………. (1)  

Consider, 

|𝑓(𝑥) −
1

2
| = |

𝑥

1+𝑥
−
1

2
| = |

2𝑥−1−𝑥

2(1+𝑥)
| = |

𝑥−1

2(𝑥+1)
| =

|𝑥−1|

2|𝑥+1|
  …. *  

Now, in S,  𝑥 > 0 ⇒ 𝑥 + 1 > 1 ⇒
1

𝑥+1
< 1.  ∴

1

|𝑥+1|
< 1 ………    (2)  

With this eqn * becomes, |𝑓(𝑥) −
1

2
| <

|𝑥−1|

2
 . 

𝐵𝑢𝑡 𝑤𝑒 𝑛𝑒𝑒𝑑  
|𝑥−1|

2
< 1 ⇒ |𝑥 − 1| < 2𝜀………. (3). 
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From eqn (1) and eqn (3), we will choose 𝛿 = min{1, 2𝜀}.  

Then |𝑓(𝑥) −
1

2
| < 𝜀, 𝑤ℎ𝑒𝑛𝑒𝑣𝑒𝑟 0 < |𝑥 − 1| < 𝛿 ⇒ lim

𝑥→1

𝑥

1+𝑥
=

1

2
.   

(iv) Let  𝑓(𝑥) = 𝑥2 + 4𝑥,   ℎ𝑒𝑟𝑒  𝑙 = 12 , 𝑐 = 2.  

We want to make |𝑓(𝑥) − 12| < 𝜀 by taking 𝑥 sufficiently close to c = 2.  

Consider the deleted 𝛿-nbd of c = 1. (Take  𝛿 = 1).  

Say  𝑆 = (𝑐 − 𝛿, 𝑐 + 𝛿) − {2} = (1, 3) − {2}. 

𝐻𝑒𝑟𝑒, |𝑥 − 𝑐| < 𝛿 𝑚𝑒𝑎𝑛𝑠 |𝑥 − 2| < 1……… (1)  

Consider, 

|𝑓(𝑥) − 12| = |𝑥2 + 4𝑥 − 12| = |𝑥 + 6||𝑥 − 2|  ………. *  

Now, in S,  𝑥 > 1 ⇒ 𝑥 + 6 = 9 ⇒ |𝑥 + 6| < 9 ………. (2)  

With this eqn * becomes, |𝑓(𝑥) − 12| < 9|𝑥 − 2| . 

𝐵𝑢𝑡 𝑤𝑒 𝑛𝑒𝑒𝑑     9|𝑥 − 2| < 𝜀 ⇒ |𝑥 − 2| <
𝜀

9
………… (3).  

From eqn (1) and eqn (3), we will choose 𝛿 = min {1,
𝜀

9
}.  

Then |𝑓(𝑥) − 12| < 𝜀,𝑤ℎ𝑒𝑛𝑒𝑣𝑒𝑟 0 < |𝑥 − 2| < 𝛿  ⇒ lim
𝑥→2

(𝑥2 + 4𝑥) = 12.  

Examples: Prove that  

 (i) lim
𝑥→1

(𝑥2 + 4𝑥) = 5. (𝑖𝑖) lim
𝑥→−2

(𝑥2 + 3𝑥) = −2.  (𝑖𝑖𝑖) lim
𝑥→3

(𝑥2 + 2𝑥) = 15.    

(𝑖𝑣) lim
𝑥→0

(
−9𝑥2+4

3𝑥+2
) = 2.  (𝑣) lim

𝑥→0
(
2𝑥2+3

𝑥+5
) =

3

5
 .  

Solution: (iv) Let 𝑓(𝑥) = (
−9𝑥2+3𝑥

3𝑥+2
) ,   ℎ𝑒𝑟𝑒  𝑙 = 2 , 𝑐 = 0.  

We want to make |𝑓(𝑥) − 2| < 𝜀 by taking x sufficiently close to c = 0.  

Consider the deleted 𝛿-nbd of c = 0. (Take  𝛿 = 1).  

Say  𝑆 = (𝑐 − 𝛿, 𝑐 + 𝛿) − {0} = (−1,1) − {0}. 

𝐻𝑒𝑟𝑒, |𝑥 − 𝑐| < 𝛿 𝑚𝑒𝑎𝑛𝑠 |𝑥 − 0| < 1……….. (1)  

Consider, 

 |𝑓(𝑥) − 2| = |(
−9𝑥2+4

3𝑥+2
) − 2| = |(−

3𝑥(3𝑥+2)

3𝑥+2
)| = |−3𝑥| = 3|𝑥|  ………. *  
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Now, in S,  𝑥 > −1 ⇒ 3|𝑥| < 1, ..……….. (2)  

With this eqn* becomes, |𝑓(𝑥) − 2| < 3|𝑥| . 

𝐵𝑢𝑡 𝑤𝑒 𝑛𝑒𝑒𝑑    3|𝑥| < 𝜀 ⇒ |𝑥| <
𝜀

3
……….. (3).  

From eqn (1) and eqn (3), we will choose 𝛿 = min {1,
𝜀

3
}.  

Then |𝑓(𝑥) − 2| < 𝜀,𝑤ℎ𝑒𝑛𝑒𝑣𝑒𝑟 0 < |𝑥 − 0| < 𝛿 

             ⇒ lim
𝑥→0

(
−9𝑥2+4

(3𝑥+2)
) = 2.  

(v) Let 𝑓(𝑥) =
2𝑥2+3

𝑥+5
,   ℎ𝑒𝑟𝑒  𝑙 =

3

5
 , 𝑐 = 0.  

We want to make |𝑓(𝑥) −
3

5
| < 𝜀 by taking 𝑥 sufficiently close to c = 0.  

Consider the deleted 𝛿-nbd of c = 0. (Take  𝛿 = 1).  

Say  𝑆 = (𝑐 − 𝛿, 𝑐 + 𝛿) − {0} = (−1, 1) − {0}. 

𝐻𝑒𝑟𝑒, |𝑥 − 𝑐| < 𝛿 𝑚𝑒𝑎𝑛𝑠 |𝑥 − 0| < 1……….. (1)  

Consider, 

 |𝑓(𝑥) −
3

5
| = |

2𝑥2+3

(𝑥+5)
−
3

5
| = |

10𝑥2−3𝑥

5(𝑥+5)
| = |

10𝑥−3

5(𝑥+5)
| |𝑥| ≤ |

10𝑥+50

5(𝑥+5)
| |𝑥| 

                                                                                                                           < 2|𝑥|  ………….. *  

𝐵𝑢𝑡 𝑤𝑒 𝑛𝑒𝑒𝑑     2|𝑥| < 𝜀 ⇒ |𝑥| <
𝜀

2
…………. (3).  

From eqn (1) and eqn (3), we will choose 𝛿 = min {1,
𝜀

2
}.  

Then |𝑓(𝑥) −
3

5
| < 𝜀, 𝑤ℎ𝑒𝑛𝑒𝑣𝑒𝑟 0 < |𝑥 − 0| < 𝛿  

                          ⇒ lim
𝑥→0

(
2𝑥2+3

𝑥+5
) =

3

5
 .  

Definition: Let 𝐴 ⊆ ℝ, 𝑓: 𝐴 → ℝ be the function and c be the cluster point of A. We say 

that the function 𝑓 is bounded on neighborhood of c if there exists a 𝛿- nbd of c and a 

constant 𝑀 > 0 𝑠. 𝑡.  

|𝑓(𝑥)| ≤ 𝑀, ∀ 𝑥 ∈ 𝐴 ∩ 𝑁𝛿(𝑐).  
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Theorem 2: If 𝐴 ⊆ ℝ 𝑎𝑛𝑓 𝑓: 𝐴 → ℝ has limit point at x = c in set of real nos. then 𝑓 is 

bounded on some nbd of c.  

Proof: Let lim
𝑥→𝑐

𝑓(𝑥) = 𝐿. 

By definition;  𝑓𝑜𝑟 𝑔𝑖𝑣𝑒𝑛 𝜀 > 0, ∃ 𝛿 > 0 𝑠. 𝑡. 0 < |𝑥 − 𝑐| < 𝛿 

⇒ |𝑓(𝑥) − 𝐿| < 𝜀. 

𝐶𝑜𝑛𝑠𝑖𝑑𝑒𝑟, |𝑓(𝑥)| − |𝐿| ≤ |𝑓(𝑥) − 𝐿| < 𝜀,𝑤ℎ𝑒𝑛𝑒𝑣𝑒𝑟 0 < |𝑥 − 𝑐| < 𝛿.  

∴ 0 < |𝑥 − 𝑐| < 𝛿 ⇒ |𝑓(𝑥)| − |𝐿| < 𝜀.  

⇒ |𝑓(𝑥)| < |𝑙| + 𝜀 ⇒ |𝑓(𝑥)| < 𝑀;𝑀 = |𝑙| + 𝜀.  

Therefore, 𝑓(𝑥) is bounded on 𝑁𝛿(𝑐). Take 𝑀 = 𝑆𝑢𝑝{𝑓(𝑐), |𝐿| + 𝜀}.  

Then if  𝑥 ∈ 𝐴 ∩ 𝑁𝛿(𝑐) ⇒ |𝑓(𝑥)| ≤ 𝑀.  i. e. 𝑓 is bounded on 𝑁𝛿(𝑐).  

Theorem 3: Algebra of limits-  

Let 𝐴 ⊆ ℝ 𝑎𝑛𝑑 𝑓, 𝑔 be functions on A to ℝ. If c𝑐 ∈ ℝ is the cluster point of A and 

lim
𝑥→𝑐

𝑓(𝑥) = 𝑙, lim
𝑥→𝑐

𝑔(𝑥) = 𝑚 then  

(𝑖) lim
𝑥→𝑐

(𝑓(𝑥) ± 𝑔(𝑥)) = lim
𝑥→𝑐

𝑓(𝑥) + lim
𝑥→𝑐

𝑔(𝑥) = 𝑙 ± 𝑚.  

(𝑖𝑖) lim
𝑥→𝑐

(𝑓(𝑥). 𝑔(𝑥)) = lim
𝑥→𝑐

𝑓(𝑥) . lim
𝑥→𝑐

𝑔(𝑥) = 𝑙.𝑚 .  

(𝑖𝑖𝑖) lim
𝑥→𝑐

(𝑘. 𝑓(𝑥)) = 𝑘. lim
𝑥→𝑐

𝑓(𝑥) = 𝑘. 𝑙.  

(𝑖𝑣) lim
𝑥→𝑐

(
𝑓(𝑥)

𝑔(𝑥)
) =

lim
𝑥→𝑐

𝑓(𝑥)

lim
𝑥→𝑐

𝑔(𝑥)
=

𝑙

𝑚
 , 𝑚 ≠ 0, 𝑔(𝑥) ≠ 0, ∀ 𝑥 ∈ 𝐴.   

Theorem 4: Let 𝐴 ⊆ ℝ, 𝑓: 𝐴 → ℝ be a function and 𝑐 ∈ ℝ be a cluster point of A. If 𝑎 ≤

𝑓(𝑥) ≤ 𝑏, ∀ 𝑥 ∈ 𝐴, 𝑥 ≠ 𝑐 𝑎𝑛𝑑 𝑖𝑓 lim
𝑥→𝑐

𝑓(𝑥) exists then 𝑎 ≤ lim
𝑥→𝑐

𝑓(𝑥) ≤ 𝑏.   

Theorem 5: (Squeeze Theorem) If 𝐴 ⊆ ℝ, 𝑓, 𝑔, ℎ: 𝐴 → ℝ be a function and 𝑐 ∈ ℝ be a 

cluster point of A and If 𝑓(𝑥) ≤ 𝑔(𝑥) ≤ ℎ(𝑥), ∀ 𝑥 ∈ 𝐴, 𝑥 ≠ 𝑐 𝑤𝑖𝑡ℎ lim
𝑥→𝑐

𝑓(𝑥) = 𝐿 =

lim
𝑥→𝑐

ℎ(𝑥) then lim
𝑥→𝑐

𝑔(𝑥) = 𝐿.   
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Definition: Left hand and Right hand limit-  

(i) Let 𝑓(𝑥) be a function defined on A⊆ℝ and let c be a cluster point of A. A 

number 𝑙 ∈ ℝ is called a Right hand limit of function 𝑓(𝑥) at 𝑥 = 𝑐 if for given 

𝜀 > 0 ∃ 𝛿 > 0 𝑠. 𝑡. 𝑥 ∈ 𝐴, 𝑐 < 𝑥 < 𝑐 + 𝛿 

                        ⇒ |𝑓(𝑥) − 𝑙| < 𝜀. We can denote this as  lim
𝑥→𝑐+

𝑓(𝑥) = 𝐿.  

(ii)  Let 𝑓(𝑥) be a function defined on A⊆ℝ and let c be a cluster point of A. A 

number 𝑙 ∈ ℝ is called a left hand limit of function 𝑓(𝑥) at 𝑥 = 𝑐 if for given 

𝜀 > 0 ∃ 𝛿 > 0 𝑠. 𝑡. 𝑥 ∈ 𝐴, 𝑐 − 𝛿 < 𝑥 < 𝑐 

                       ⇒ |𝑓(𝑥) − 𝑙| < 𝜀.  We can denote this as  lim
𝑥→𝑐−

𝑓(𝑥) = 𝐿.  

Theorem 6: Let 𝐴 ⊆ ℝ, 𝑓: 𝐴 → ℝ be a function and 𝑐 ∈ ℝ be a cluster point of A. If 

 lim
𝑥→𝑐

𝑓(𝑥) exists if and only if lim
𝑥→𝑐−

𝑓(𝑥)  𝑎𝑛𝑑 lim
𝑥→𝑐+

𝑓(𝑥)  𝑒𝑥𝑖𝑠𝑡𝑠 𝑎𝑛𝑑 lim
𝑥→𝑐−

𝑓(𝑥) = lim
𝑥→𝑐+

𝑓(𝑥). 

We have lim
𝑥→𝑐−

𝑓(𝑥) = lim
𝑥→𝑐

𝑓(𝑥) =  lim
𝑥→𝑐+

𝑓(𝑥).  

Remark: 

1. Left hand and Right hand limit are called one sided limits of a function at a point.  

2. It may possible that one of them may exist or both may exist and are different. 

Infinite limits:  

Let 𝐴 ⊆ ℝ, 𝑓: 𝐴 → ℝ be a function and 𝑐 ∈ ℝ be a cluster point of A. (i) We say that 𝑓 →

∞ 𝑎𝑠 𝑥 → 𝑐 if for every 𝛼 ∈ ℝ ∃ 𝛿 > 0 𝑠. 𝑡. 𝑥 ∈ 𝐴. 0 < |𝑥 − 𝑐| < 𝛿 ⇒ 𝑓(𝑥) > 𝛼.  

 We can write this as  lim
𝑥→𝑐

𝑓(𝑥) = ∞.   

(ii)We say that 𝑓 → ∞ 𝑎𝑠 𝑥 → 𝑐 if for every 𝛽 ∈ ℝ ∃ 𝛿 > 0 𝑠. 𝑡. 

𝑥 ∈ 𝐴, 0 < |𝑥 − 𝑐| < 𝛿 ⇒ 𝑓(𝑥) < 𝛽. 

𝑇ℎ𝑖𝑠 𝑐𝑎𝑛 𝑏𝑒 𝑤𝑟𝑖𝑡𝑡𝑒𝑛 𝑎𝑠 lim
𝑥→𝑐

𝑓(𝑥) = ∞.     

Illustrative Example:  

Let 𝑓(𝑥) = 𝑥2 − 2, 𝑐 = 3 𝑡ℎ𝑒𝑛 lim
𝑥→3

(𝑥2 − 2) = 7.  

For, 𝑥 > 3 𝑖. 𝑒. 𝑥 → 3+.  

If 𝑥 = 3.01 𝑡ℎ𝑒𝑛 𝑓(𝑥) = 7.0601,  

    𝑥 = 3.001 𝑡ℎ𝑒𝑛 𝑓(𝑥) = 7.006001,  
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    𝑥 = 3.0001 𝑡ℎ𝑒𝑛 𝑓(𝑥) = 7.00060001,   

    𝑥 = 3.00001 𝑡ℎ𝑒𝑛 𝑓(𝑥) = 7.0000600001. 𝑎𝑛𝑑  

For,𝑥 < 3  𝑖. 𝑒. 𝑥 → 3−.  

If 𝑥 = 2.99 𝑡ℎ𝑒𝑛 𝑓(𝑥) = 6.9401, 

   𝑥 = 2.999 𝑡ℎ𝑒𝑛 𝑓(𝑥) = 6.994001,   

   𝑥 = 2.9999 𝑡ℎ𝑒𝑛 𝑓(𝑥) = 6.99940001,   

   𝑥 = 2.99999 𝑡ℎ𝑒𝑛 𝑓(𝑥) = 6.9999400001.  

Here, in both the cases f(x) is very close to 7.  

Hence, lim
𝑥→3

(𝑥2 − 2) = 7.   

Example: 1. Find the right hand and left hand limit of a function 

                          𝑓(𝑥) = {
(
|𝑥−3|

𝑥−3
) , 𝑥 ≠ 3

0,            𝑥 = 3
  

Solution: If 𝑥 > 3 𝑡ℎ𝑒𝑛 lim
𝑥→3+

𝑓(𝑥) = lim
𝑥→4+

(
|𝑥−3|

𝑥−3
) 

                                                                       = lim
𝑥→3+

(
𝑥−3

𝑥−3
) = 1.  

If 𝑥 < 3 𝑡ℎ𝑒𝑛 lim
𝑥→3−

𝑓(𝑥) = lim
𝑥→3−

(
|𝑥−3|

𝑥−3
) 

                                                     = lim
𝑥→3−

(
−(𝑥−3)

𝑥−3
) = −1.  

∴  lim
𝑥→3+

𝑓(𝑥) ≠ lim
𝑥→3

𝑓(𝑥)  

⇒ lim
𝑥→3

𝑓(𝑥) does not exist. 

2. Evaluate lim
𝑥→0

[
𝑒
1
𝑥

𝑒
1
𝑥+1
] if it exist.  

Solution: We have if 𝑥 > 0 𝑡ℎ𝑒𝑛
1

𝑥
→ ∞ ∴ 𝑒

1

𝑥 → ∞.   

If 𝑥 < 0,
1

𝑥
→ −∞ ∴ 𝑒

1

𝑥 → 0.  

 ∴ lim
𝑥→0+

[
𝑒
1
𝑥

𝑒
1
𝑥+1
]= lim
𝑥→0+

[
1

1+𝑒
−1
𝑥

] = 1. 𝑎𝑛𝑑 lim
𝑥→0−

[
𝑒
1
𝑥

𝑒
1
𝑥+1
] = 0.  
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⇒ lim
𝑥→0

[
𝑒
1
𝑥

𝑒
1
𝑥+1
]  does not exist.  

3. Evaluate lim
𝑥→−2

(𝑥+3)|𝑥+2|

𝑥+2
.  

Solution:  lim
𝑥→−2+

(𝑥+3)|𝑥+2|

𝑥+2
= lim
𝑥→−2+

(𝑥+3)(𝑥+2)

𝑥+2
 

                                                       = lim
𝑥→−2+

(𝑥 + 3) = 1…. (1) 

 Again lim
𝑥→−2−

(𝑥+3)|𝑥+2|

𝑥+2
= lim

𝑥→−2−

(𝑥+3).−(𝑥+2)

𝑥+2
 

                                                   = lim
𝑥→−2−

(𝑥 + 3) = −1….(2) 

 From (1) and (2) we see that given limit does not exists. 

4. Find the limit of 𝑓(𝑥) = [
𝑥𝑒

1
𝑥

𝑒
1
𝑥+1
] , 𝑥 ≠ 0. 

5. Find the limit of 𝑓(𝑥) =

{
 

 
𝑥2

𝑎
− 𝑎, 0 < 𝑥 < 𝑎

0,                   𝑥 = 𝑎

𝑎 −
𝑎3

𝑥2
,         𝑥 > 𝑎

   

6. Find the limit of 𝑓(𝑥) =
𝑥−|𝑥|

|𝑥|
, 𝑥 ≠ 0.  

7. Find lim
𝑥→0

(
3𝑥+|𝑥|

7𝑥−5|𝑥|
) , 𝑥 ≠ 0.  

8. Prove that lim
𝑥→0

(
𝑥2

3𝑥+|𝑥|
) = 0 if it exists.  

9. Prove that lim
𝑥→0

(𝑥𝑠𝑖𝑛 (
1

𝑥
)) = 0.  

Solution: Since −1 ≤ 𝑠𝑖𝑛𝑥 ≤ 1, for all real nos. x.  

                 ⇒ −1 ≤ sin (
1

𝑥
) ≤ 1, 𝑥 ≠ 0.   ∴  |𝑥| ≤ x sin (

1

𝑥
) ≤ |𝑥|,  𝑥 ≠ 0.  

By Squeeze theorem, lim
𝑥→0

(𝑥𝑠𝑖𝑛 (
1

𝑥
)) = 0.  
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More Examples: 

 1. Evaluate lim
𝑥→1

𝑥3−1

𝑥2−1
.  

Solution: lim
𝑥→1

𝑥3−1

𝑥2−1
= lim

𝑥→1
[
(𝑥−1)(𝑥2+𝑥+1)

(𝑥−1)(𝑥+1)
] = lim

𝑥→1
[
𝑥2+𝑥+1

𝑥+1
] =

3

2
 (By quotient rule)  

2. lim
𝑥→4

4−√𝑥+12

𝑥−4
 

Solution:lim
𝑥→4

4−√𝑥+12

𝑥−4
= lim

𝑥→4
{
4−√𝑥+12

𝑥−4
 ×

4+√𝑥+12

4+√𝑥+12
} = lim

𝑥→4
{−

1

4+√𝑥+12
} = −

1

8
 .  

3. Evaluate lim
x→0

𝑥2−𝑥+𝑠𝑖𝑛𝑥

2𝑥
. 

Solution: lim
𝑥→0

𝑥2−𝑥+𝑠𝑖𝑛𝑥

2𝑥
= lim

𝑥→0
[
𝑥

2
−
1

2
+
𝑠𝑖𝑛𝑥

2𝑥
] = 0 +

1

2
+
1

2
. 1 = 0.  

 

Examples: Using Squeeze theorem show that  

(i) lim
𝑥→0

𝑠𝑖𝑛𝑥 = 0 (𝑖𝑖) lim
𝑥→0

𝑥2 cos (
1

𝑥
) = 0.  

Solution: (i) Let 𝑓(𝑥) = 𝑠𝑖𝑛𝑥.   

We know that |𝑠𝑖𝑛𝑥| ≤ |𝑥|, 𝑥 ≥ 0 𝑖. 𝑒. −𝑥 ≤ 𝑠𝑖𝑛𝑥 ≤ 𝑥. 

∴  lim
𝑥→0

(−𝑥) = 0 𝑎𝑛𝑑 lim
𝑥→0

𝑥 = 0.  

⇒  lim
𝑥→0

𝑠𝑖𝑛𝑥 = 0.  

(ii) We know that −1 ≤ 𝑐𝑜𝑠 (
1

𝑥
) ≤ 1, ∀ 𝑥 ≠ 0.  

∴  −𝑥2 ≤ 𝑥2 cos (
1

𝑥
) ≤ 𝑥2, ∀ 𝑥 ≥ 0.   

∴  lim
𝑥→0

(−𝑥2) = 0 𝑎𝑛𝑑 lim
𝑥→0

(𝑥2) = 0.  

⇒  lim
𝑥→0

𝑥2 cos (
1

𝑥
) = 0.  

Example: Find lim
𝑥→0

𝑓(𝑥), if it exists for the following functions. 

(𝒊) 𝑓: ℝ → ℝ 𝑑𝑒𝑓𝑖𝑛𝑒𝑑 𝑏𝑦 𝑓(𝑥) = {
1

𝑥
,       𝑥 > 0

1, 𝑥 ≤ 0
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Solution: We have 𝑓(𝑥) = {
1

𝑥
,       𝑥 > 0

1,        𝑥 ≤ 0
  

lim
𝑥→0−

𝑓(𝑥) = lim
𝑥→0−

1 = 1.  

𝑎𝑛𝑑 lim
𝑥→0+

𝑓(𝑥) = lim
𝑥→0+

(
1

𝑥
) does not exists.   

∴  lim
𝑥→0

𝑓(𝑥) does not exists.  

(ii)  𝑓: ℝ → ℝ 𝑑𝑒𝑓𝑖𝑛𝑒𝑑 𝑏𝑦 𝑓(𝑥) = {
1

𝑥
,       𝑥 < 0

1,        𝑥 ≥ 0
  

Solution: We have 𝑓(𝑥) = {
1

𝑥
,       𝑥 < 0

1,        𝑥 ≥ 0
  

lim
𝑥→0+

𝑓(𝑥) = lim
𝑥→0+

1 = 1. 𝑎𝑛𝑑 lim
𝑥→0−

𝑓(𝑥) = lim
𝑥→0−

(
1

𝑥
) does not exists. 

 ∴  lim
𝑥→0

𝑓(𝑥) does not exists.  

(iii)  𝑓: [−1, 1] → ℝ 𝑑𝑒𝑓𝑖𝑛𝑒𝑑 𝑏𝑦 𝑓(𝑥) = {
0,      − 1 ≤ 𝑥 ≤ 0
1,          0 <  𝑥 ≤ 1

  

Solution: We have 𝑓(𝑥) = {
0,   − 1 ≤ 𝑥 ≤ 0
1,        0 < 𝑥 ≤ 1

  

lim
𝑥→0−

𝑓(𝑥) = lim
𝑥→0−

0 = 0. 𝑎𝑛𝑑   

 lim
𝑥→0+

𝑓(𝑥) = lim
𝑥→0+

1 = 1  

 ∴  lim
𝑥→0−

𝑓(𝑥)  𝑎𝑛𝑑 lim
𝑥→0+

𝑓(𝑥) both exists.  

But they are not equal /same. Therefore, lim
𝑥→0

𝑓(𝑥) does not exist.   

Evaluate (i) lim
𝑥→∞

√𝑥−5

√𝑥+3
, 𝑥 > 0.  

Solution: lim
𝑥→∞

√𝑥−5

√𝑥+3
= lim

𝑥→∞

√1−
5

𝑥

√1+
3

𝑥

 

                                          = lim
𝑥→∞

 [
(1−√

5

𝑥
)

(1+√
3

𝑥
)

] =
lim
𝑥→∞

(1−√
5

𝑥
)

lim
𝑥→∞

(1+√
3

𝑥
)

=
1−0

1+0
= 1.  
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(ii) Evaluate lim
𝑥→∞

√𝑥−𝑥

√𝑥+𝑥
 , 𝑥 > 0.  

Solution: lim
𝑥→∞

√𝑥−𝑥

√𝑥+𝑥
= lim

𝑥→∞
[
(
√𝑥

𝑥
−1)

(
√𝑥

𝑥
+1)
] 

                                           = lim
𝑥→∞

[

1

√𝑥
−1

1

√𝑥
+1
] =

lim
𝑥→∞

(
1

√𝑥
−1)

lim
𝑥→∞

(
1

√𝑥
+1)

=
0−1

0+1
= −1.  

(iii) Evaluate lim
𝑥→∞

5𝑥2+3𝑥+20

3𝑥2−2𝑥
 . 

 Solution: lim
𝑥→∞

5𝑥2+3𝑥+20

3𝑥2−2𝑥
= lim

𝑥→∞
[
(5+

3

𝑥
+
20

𝑥2
)

(3−
2

𝑥
)
] 

                                                     =
lim
𝑥→∞

(5+
3

𝑥
+
20

𝑥2
)

lim
𝑥→∞

(3−
2

𝑥
)
=

5+0+0

3−0
=

5

3
.   

 

Continuity 

Definition:  

                           Let 𝐴 ⊆ ℝ, 𝑓: 𝐴 → ℝ, 𝑐 ∈ 𝐴. we say that 𝑓 is continuous at 𝑥 = 𝑐 if given 

𝜀 > 0 ∃ 𝛿 > 0 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡  

                             ∀ 𝑥 ∈ 𝐴, |𝑥 − 𝑐| < 𝛿 ⇒ |𝑓(𝑥) − 𝑓(𝑐)| < 𝜀.  

If function 𝑓 is not continuous at 𝑥 = 𝑐 then it is said to be discontinuous at that point.  

Remark:  

1. If 𝑐 ∈ 𝐴 is a cluster point of A then a function is continuous at 𝑥 = 𝑐 if and only if 

lim
𝑥→𝑐

𝑓(𝑥) = 𝑓(𝑐).  

2. If 𝑐 ∈ 𝐴 is not a cluster point of A then 𝑓 is automatically continuous at c. Such points 

are often called isolated points of A.  

Generally, we test the function for continuity only at cluster points.  

Definition : A function 𝑓 is said to be continuous at a point 𝑥 = 𝑐 of its domain if  

                        (𝑖) lim
𝑥→𝑐

𝑓(𝑥) exists. (𝑖𝑖) 𝑓(𝑐) is defined. (𝑖𝑖𝑖) lim
𝑥→𝑐

𝑓(𝑥) = 𝑓(𝑐).  

Definition: Let 𝐴 ⊆ ℝ 𝑎𝑛𝑑 𝑓: 𝐴 → ℝ. If B is a subset of A, we say that 𝑓 is continuous on 

the set B if 𝑓 is continuous at every point of B.  
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Example: The constant function𝑓(𝑥) = 𝑏 is continuous on ℝ.  

For, if 𝑐 ∈ ℝ  𝑡ℎ𝑒𝑛 lim
𝑥→𝑐

𝑓(𝑥) = 𝑏 = 𝑓(𝑐). Thus, 𝑓 is continuous at every point 𝑐 ∈ ℝ.  

Discontinuous function: A function 𝑓 which is not continuous is called discontinuous 

function. 

Examples:  

1. Let 𝑓(𝑥) =
1

𝑥
, 𝑥 ≠ 0.  

Here, note that the function is not defined at 𝑥 = 0.  

i. e. 𝑓(0) is not defined (condition (ii) is not satisfied). 

Therefore, function is not continuous at 𝑥 = 0.  

2. 𝑓(𝑥) = {
|𝑥|

𝑥
 ,   𝑥 ≠ 0

0,     𝑥 = 0
  

Here, 𝑓(0) = 0. i. e. function is defined at 𝑥 = 0.  

Consider, lim
𝑥→0−

𝑓(𝑥) = lim
𝑥→0−

−𝑥

𝑥
= −1 𝑎𝑛𝑑  

lim
𝑥→0+

𝑓(𝑥) = lim
𝑥→0+

𝑥

𝑥
= 1.  

L.H.L.≠ R.H.L.⇒ lim
𝑥→0

𝑓(𝑥) does not exist. 

Therefore, function is not continuous at 𝑥 = 0. (Condition (i) is not satisfied).   

3. Let 𝑓(𝑥) = {
𝑠𝑖𝑛𝑥

𝑥
 , 𝑥 ≠ 0

0,     𝑥 = 0
  

Here, 𝑓(0) = 0. i. e. 𝑓(0) is defined at 𝑥 = 0. We know that lim
𝑥→0

(
𝑠𝑖𝑛𝑥

𝑥
) = 1 ≠ 𝑓(0). 

Therefore, function is not continuous at 𝑥 = 0. (Condition (iii) is not satisfied).  

 

Types of Discontinuity:  

There are two types of discontinuities (i) Removable discontinuity (ii) Irremovable OR 

Essential discontinuity.  
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Definition: If lim
𝑥→𝑐

𝑓(𝑥) exist but it is not equal to 𝑓(𝑐) then we say that 𝑓(𝑥) has 

removable discontinuity at 𝑥 = 𝑐.  

If  lim
𝑥→𝑐

𝑓(𝑥) does not exists then 𝑓(𝑥) is said to have Essential/ Irremovable 

discontinuity.  

Examples: 

1. Test the continuity of 𝑓(𝑥) = {
𝑠𝑖𝑛2𝑥

𝑥
 , 𝑥 ≠ 0

0,       𝑥 = 0
   

Solution: Consider, lim
𝑥→0

𝑓(𝑥) = lim
𝑥→0

𝑠𝑖𝑛2𝑥

𝑥
 = lim

𝑥→0
(
𝑠𝑖𝑛2𝑥

2𝑥
× 2) 

                                                                                         = lim
𝑥→0

𝑠𝑖𝑛2𝑥

2𝑥
× lim
𝑥→0

2 = 1.2 = 2.  

But 𝑓(0) = 0. ∴  lim
𝑥→0

𝑓(𝑥) ≠ 𝑓(0).  

Therefore, f is discontinuous at 𝑥 = 0.  

This discontinuity is removable because by redefining the function we can make it as 

continuous.  

               i. e. if 𝑓(𝑥) = {
𝑠𝑖𝑛2𝑥

𝑥
 , 𝑥 ≠ 0

2,           𝑥 = 0
 then it is continuous at x = 0.  

2. Suppose 𝑓(𝑥) = {
(𝑥2−16)

(𝑥−4)
,   𝑥 ≠ 4

4,             𝑥 = 4
  then function has removable discontinuity at 𝑥 = 4.  

3. Suppose 𝑓(𝑥) = {
𝑥2−1

𝑥+1
,    𝑥 ≠ −1

2,           𝑥 = −1
 Then function has removable discontinuity at            

𝑥 = −1.  

4. 𝑓(𝑥) = {
|𝑥|

𝑥
,   𝑥 ≠ 0

0,     𝑥 = 0
  then this has essential discontinuity.  

                  For, lim
𝑥→0−

|𝑥|

𝑥
= lim

𝑥→0−

−𝑥

𝑥
= −1 𝑎𝑛𝑑 lim

𝑥→0+

|𝑥|

𝑥
= lim

𝑥→0+

𝑥

𝑥
= 1.  

                 𝐻𝑒𝑟𝑒, lim
𝑥→0−

𝑓(𝑥) ≠ lim
𝑥→0+

𝑓(𝑥)  ∴  lim
𝑥→0

𝑓(𝑥) does not exist.   

5. Discuss the continuity of the function   

                     (𝑖) 𝑓(𝑥) = {
𝑥−|𝑥|

𝑥
,    𝑥 ≠ 0

0,           𝑥 = 0
            (𝑖𝑖) 𝑔(𝑥) = {

𝑥−|𝑥|

𝑥
,    𝑥 < 0

2,           𝑥 = 0
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6. Discuss the continuity of 𝑓(𝑥) = {

𝑥2

4
− 4, 0 < 𝑥 < 4

0,                    𝑥 = 4

4 −
64

𝑥2
,           𝑥 > 4

 

7. Check the continuity of  𝑓(𝑥) =

{
 

 (𝑒
1
𝑥−𝑒

−
1
𝑥) 

(𝑒
1
𝑥+𝑒

−
1
𝑥)

,    𝑥 ≠ 0

1,                  𝑥 = 0

     

8.  Check the continuity of ℎ(𝑥) = {
𝑒
1
𝑥+1

𝑒
1
𝑥−1 

,   𝑥 ≠ 0

1,          𝑥 = 0

  

 

Continuity at end points:  

Definition: Let a function 𝑓 be defined on a closed interval [a, b]. Then 𝑓 is said to be 

continuous at 𝑥 = 𝑎 if it is continuous from right at 𝑥 = 𝑎. i. e. if lim
𝑥→𝑎+

𝑓(𝑥) = 𝑓(𝑎) and 𝑓 

is said to be continuous at 𝑥 = 𝑏 if it is continuous from left at 𝑥 = 𝑏. 

     𝑖. 𝑒. if lim
𝑥→𝑏−

𝑓(𝑥) = 𝑓(𝑏).  

Continuity of a function on an interval:  

Definition: Let a function 𝑓 be defined on a closed interval [a, b]. Then 𝑓 is said to be 

continuous on the closed interval [a, b], if 

(𝑖) lim
𝑥→𝑐

𝑓(𝑥) = 𝑓(𝑐), ∀ 𝑐 ∈ (𝑎, 𝑏) i. e. 𝑓 is continuous at every point of the interval  

      (a, b). 

 (𝑖𝑖) lim
𝑥→𝑎+

𝑓(𝑥) = 𝑓(𝑎) and  

 (𝑖𝑖𝑖) lim
𝑥→𝑏−

𝑓(𝑥) = 𝑓(𝑏)  

Algebra of continuous functions:  

Theorem 7: Let 𝐴 ⊆ ℝ, let 𝑓 𝑎𝑛𝑑 𝑔 are continuous functions at 𝑥 = 𝑐 then  

(a) 𝑓 ± 𝑔, 𝑘𝑓, 𝑓. 𝑔 are continuous at 𝑥 = 𝑐, k- constant.  

(b) 𝑔: 𝐴 → ℝ is continuous at 𝑐 ∈ 𝐴 𝑎𝑛𝑑 𝑖𝑓 𝑔(𝑥) ≠ 0, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥 ∈ 𝐴 then the quotient 

function  
𝑓

𝑔
  is continuous at 𝑥 = 𝑐.  
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Proof: Since 𝑓 𝑎𝑛𝑑 𝑔 are continuous at 𝑥 = 𝑐.  

∴  lim
𝑥→𝑐

𝑓(𝑥) = 𝑓(𝑐) 𝑎𝑛𝑑 lim
𝑥→𝑐

𝑔(𝑥) = 𝑔(𝑐).  

(a) Consider, lim
𝑥→𝑐

(𝑓 ± 𝑔)(𝑥) = lim
𝑥→𝑐

(𝑓(𝑥) ± 𝑔(𝑥)) 

                                                             = lim
𝑥→𝑐

𝑓(𝑥) ± lim
𝑥→𝑐

𝑔(𝑥) = 𝑓(𝑐) ± 𝑔(𝑐) 

                                                                                                                      = (𝑓 ± 𝑔)(𝑐).  

Therefore, 𝑓 ± 𝑔 is continuous at 𝑥 = 𝑐.  

Consider, lim
𝑥→𝑐

(𝑘𝑓)(𝑥) = lim
𝑥→𝑐

(𝑘. 𝑓(𝑥)) = 𝑘 lim
𝑥→𝑐

𝑓(𝑥)   

                                                                                     = 𝑘. 𝑓(𝑐) = (𝑘𝑓)(𝑐).  

i. e. 𝑘𝑓 is continuous at 𝑥 = 𝑐.  

Consider, lim
𝑥→𝑐

(𝑓. 𝑔)(𝑥) = lim
𝑥→𝑐

𝑓(𝑥). 𝑔(𝑥) = lim
𝑥→𝑐

𝑓(𝑥) . lim
𝑥→𝑐

𝑔(𝑥) 

                                                                       = 𝑓(𝑐). 𝑔(𝑐) = (𝑓𝑔)(𝑐).  

Therefore, 𝑓. 𝑔 is continuous at 𝑥 = 𝑐.  

(b) Since 𝑐 ∈ 𝐴 𝑔(𝑐) ≠ 0. But as lim
𝑥→𝑐

𝑔(𝑥) = 𝑔(𝑐).  

We have  lim
𝑥→𝑐

(
𝑓

𝑔
) (𝑥) =

lim
𝑥→𝑐

𝑓(𝑥)

lim
𝑥→𝑐

𝑔(𝑥)
=

𝑓(𝑐)

𝑔(𝑐)
= (

𝑓

𝑔
) (𝑐).  

Therefore, 
𝑓

𝑔
 is continuous at 𝑥 = 𝑐.   

Theorem 8: If 𝑓 is continuous function at 𝑥 = 𝑐 then |𝑓| is also continuous at 𝑥 = 𝑐.  

Proof: We shall use the 𝜀 − 𝛿 definition of continuity to prove this theorem. Suppose 𝑓 is 

continuous function at 𝑥 = 𝑐. then by the definition, for given 𝜀 > 0 ∃ 𝛿 > 0 𝑠. 𝑡.  

|𝑓(𝑥) − 𝑓(𝑐)| < 𝜀 𝑤ℎ𝑒𝑛𝑒𝑣𝑒𝑟 |𝑥 − 𝑐| < 𝛿.  

Consider, ||𝑓(𝑥)| − |𝑓(𝑐)|| ≤ |𝑓(𝑥) − 𝑓(𝑐)| < 𝜀, 𝑤ℎ𝑒𝑛𝑒𝑣𝑒𝑟 |𝑥 − 𝑐| < 𝛿.  

 Therefore, by the definition, |𝑓(𝑥)| is continuous at 𝑥 = 𝑐.  

Remark: The converse of this theorem is not true.  

                                For, Let 𝑓(𝑥) = {
−1,    𝑥 < 𝑐
1,       𝑥 ≥ 𝑐
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Then  lim
𝑥→𝑐

|𝑓(𝑥)| = lim
𝑥→𝑐

(1) = 1 = 𝑓(𝑐). Therefore, |𝑓(𝑥)| is continuous at 𝑥 = 𝑐.  

But lim
𝑥→𝑐

𝑓(𝑥) does not exist.  

Because lim
𝑥→𝑐−

𝑓(𝑥) = −1 𝑎𝑛𝑑 lim
𝑥→𝑐+

𝑓(𝑥) = 1.  

Therefore, 𝑓 is not continuous at 𝑥 = 𝑐.  

Theorem 9: If 𝑓 is continuous at 𝑥 = 𝑐 𝑎𝑛𝑑 𝑓(𝑐) ≥ 0 𝑡ℎ𝑒𝑛 √𝑓  is continuous at 𝑥 = 𝑐.  

Proof: As 𝑓 is continuous at 𝑥 = 𝑐, 

 lim
𝑥→𝑐

𝑓(𝑥) = 𝑓(𝑐). lim
𝑥→𝑐

(√𝑓(𝑥)) = √lim
𝑥→𝑐

𝑓(𝑥) = √𝑓(𝑐).  

Therefore, √𝑓 is continuous at 𝑥 = 𝑐.  

Composition of Continuous functions:  

Theorem 10: Let 𝐴 ⊆ ℝ, 𝑓: 𝐴 → ℝ 𝑎𝑛𝑑 𝑔: 𝐵 → ℝ be functions such that 𝑓(𝐴) ⊆ 𝐵. If 𝑓 is 

continuous at a point 𝑐 ∈ 𝐴 and 𝑔 is continuous at 𝑏 = 𝑓(𝑐) ∈ 𝐵 then the composite 

function 𝑔 ∘ 𝑓: 𝐴 → ℝ is continuous at c.  

Proof: Since 𝑓 is continuous at 𝑐 ∈ 𝐴.  

∴ 𝑓𝑜𝑟 𝜀 > 0 ∃ 𝛿 > 0 𝑠. 𝑡. |𝑥 − 𝑐| < 𝛿 ⇒  |𝑓(𝑥) − 𝑓(𝑐)| < 𝜌 ………. (1)  

Also, 𝑔 is continuous at 𝑏 = 𝑓(𝑐) ∈ 𝐵.  

∴ 𝑓𝑜𝑟 𝜀 > 0, ∃ 𝜌 > 0 𝑠. 𝑡. |𝑓(𝑥) − 𝑓(𝑐)| < 𝜌  

⇒  |𝑔(𝑓(𝑥)) − 𝑔(𝑓(𝑐))| < 𝜀.……… (2)  

From Eqn. (1) and (2), we have for given 𝜀 > 0, ∃ 𝛿 > 0 𝑠. 𝑡. 

𝑤ℎ𝑒𝑛 |𝑥 − 𝑐| < 𝛿 ⇒  |𝑔(𝑓(𝑥)) − 𝑔(𝑓(𝑐))| < 𝜀 

⇒ |𝑥 − 𝑐| < 𝛿 ⇒  |(𝑔 ∘ 𝑓)(𝑥) − (𝑔 ∘ 𝑓)(𝑐)| < 𝜀.  

This shows that the composite function 𝑔 ∘ 𝑓 is continuous at 𝑥 = 𝑐.  

Examples:  

1. Find 𝛼 𝑎𝑛𝑑 𝛽, if the function 𝑓(𝑥) is continuous on (−3, 5);  

                             where 𝑓(𝑥) = {
𝑥 + 𝛼,     − 3 < 𝑥 < 1
3𝑥 + 2,       1 ≤ 𝑥 < 3
𝛽 + 𝑥,          3 ≤ 𝑥 < 5
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Solution: We shall test the continuity of 𝑓(𝑥) 𝑎𝑡 𝑥 = 1 𝑎𝑛𝑑 3.  

(a) At 𝑥 = 1: 

 𝑓(1) = 5,𝑤ℎ𝑒𝑛 𝑥 = 1 𝑓(𝑥) = 3𝑥 + 2. 

lim
𝑥→1+

𝑓(𝑥) = lim
𝑥→1+

(3𝑥 + 2) = 3(1) + 2 = 5.  

lim
𝑥→1−

𝑓(𝑥) = lim
𝑥→1−

(𝑥 + 𝛼) = 1 + 𝛼.  

But it is given that 𝑓(𝑥) is continuous at 𝑥 = 1.  

∴ 𝑅. 𝐻. 𝐿. = 𝐿. 𝐻. 𝐿. ∴ 5 = 1 + 𝛼 ⇒  𝛼 = 4.  

(b) At 𝑥 = 3: 

𝑓(3) = 𝛽 + 3,𝑤ℎ𝑒𝑛 𝑥 = 3 𝑓(𝑥) = 𝛽 + 3.   

lim
𝑥→3+

𝑓(𝑥) = lim
𝑥→3+

(𝛽 + 𝑥) = 𝛽 + 3.   

lim
𝑥→3−

𝑓(𝑥) = lim
𝑥→3−

(3𝑥 + 2) = 3(3) + 2 = 11.  

But it is given that 𝑓(𝑥) is continuous at 𝑥 = 3.  

∴ 𝑅. 𝐻. 𝐿. = 𝐿. 𝐻. 𝐿. ∴  𝛽 + 3 = 11 ⇒  𝛽 = 8.  

2. Find 𝛼, 𝛽 if the function is continuous on (-2, 2); where 𝑓(𝑥) = {
𝑥 + 𝛼,    − 2 < 𝑥 < 0
2𝑥 + 1,       0 ≤ 𝑥 < 1
𝛽 − 𝑥,         1 ≤ 𝑥 < 2

  

3. Discuss the continuity of 𝑓(𝑥) at 𝑥 = 1, 2, 4; where 

                                       𝑓(𝑥) =

{
 

 
2𝑥 − 1,             𝑥 ≤ 1

𝑥2,             1 < 𝑥 < 2
3𝑥 − 4,    2 ≤ 𝑥 < 4

𝑥
3

2,                     𝑥 ≥ 4

   

Solution: At the point 𝑥 = 1:  

 lim
𝑥→1+

𝑓(𝑥) = lim
𝑥→1+

(𝑥2) = 1 𝑎𝑛𝑑   

lim
𝑥→1−

𝑓(𝑥) = lim
𝑥→1−

(2𝑥 − 1) = 2(1) − 1 = 1.  

𝐴𝑙𝑠𝑜 𝑤𝑒 𝑤ℎ𝑒𝑛 𝑥 = 1, 𝑓(𝑥) = 2𝑥 − 1 ∴ 𝑓(1) = 2(1) − 1 = 1.   

∴ 𝑤𝑒 ℎ𝑎𝑣𝑒 lim
𝑥→1+

𝑓(𝑥) = lim
𝑥→1−

𝑓(𝑥) = 𝑓(1).   

∴ 𝑓(𝑥)is continuous at 𝑥 = 1.  

At point 𝑥 = 2: 
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lim
𝑥→2+

𝑓(𝑥) = lim
𝑥→2+

(3𝑥 − 4) = 3(2) − 4 = 2.   

lim
𝑥→2−

𝑓(𝑥) = lim
𝑥→2−

(𝑥2) = 22 = 4.  

∴  lim
𝑥→2+

𝑓(𝑥)  ≠ lim
𝑥→2−

𝑓(𝑥)  

∴  lim
𝑥→2

𝑓(𝑥) does not exist.  

∴ 𝑓(𝑥) is not continuous at 𝑥 = 2.  

At the point 𝑥 = 3:  

lim
𝑥→4+

𝑓(𝑥) = lim
𝑥→4+

(𝑥
3

2) = (4
3

2) = (23) = 8.  

 lim
𝑥→4−

𝑓(𝑥) = lim
𝑥→4−

(3𝑥 − 4) = 3(4) − 4 = 8.  

𝐴𝑙𝑠𝑜 𝑤ℎ𝑒𝑛 𝑥 = 4, 𝑓(𝑥) = (𝑥
3

2) ∴ 𝑓(4) = 4
3

2 = 8.   

∴ 𝑤𝑒 ℎ𝑎𝑣𝑒 lim
𝑥→4+

𝑓(𝑥) = lim
𝑥→4−

𝑓(𝑥) = 𝑓(4).   

∴ 𝑓(𝑥) is continuous at 𝑥 = 4.  

4. The function 𝑓 is defined on [0, 3] by 𝑓(𝑥) = {

𝑥2,          0 ≤ 𝑥 < 1
1 + 𝑥,    1 ≤ 𝑥 ≤ 2
6

𝑥
,            2 < 𝑥 ≤ 3

  Discuss the 

continuity of 𝑓(𝑥) 𝑜𝑛 [0, 3].  

5. Discuss the continuity of function  𝑓(𝑥) = {
𝑥2 + 2,            0 ≤ 𝑥 < 1
4𝑥 − 1,            1 ≤ 𝑥 ≤ 2

𝑥2 − 1,            2 < 𝑥 ≤ 3

   

6. Test the function for continuity on [-2, 2]; where  

                                         𝑓(𝑥) = {
2 − 3𝑥,           − 2 ≤ 𝑥 ≤ 1
2𝑥 + 7,           − 1 < 𝑥 < 1
4𝑥 + 1,                1 ≤ 𝑥 ≤ 2

  

Solution: We need to check the continuity of  𝑓(𝑥) 𝑎𝑡 

 𝑥 = −1, 1 𝑎𝑛𝑑 lim
𝑥→2−

𝑓(𝑥) , lim
𝑥→−2+

𝑓(𝑥).   

At the point 𝑥 = −1:  

lim
𝑥→−1+

𝑓(𝑥) = lim
𝑥→−1+

(2𝑥 + 7) = 2(−1) + 7 = 5.   

lim
𝑥→−1−

𝑓(𝑥) = lim
𝑥→−1−

(2 − 3𝑥) = 2 − 3(−1) = 5.  
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𝐴𝑙𝑠𝑜 𝑤ℎ𝑒𝑛 𝑥 = −1, 𝑓(𝑥) = 2 − 3𝑥 ∴ 𝑓(−1) = 2 − 3(−1) = 5.   

∴ lim
𝑥→−1+

𝑓(𝑥) = lim
𝑥→−1−

𝑓(𝑥) = 𝑓(−1).   

∴ 𝑓(𝑥) is continuous at 𝑥 = −1.  

At the point 𝑥 = 1:  

lim
𝑥→1+

𝑓(𝑥) = lim
𝑥→1+

(4𝑥 + 1) = 4(1) + 1 = 5.   

lim
𝑥→1−

𝑓(𝑥) = lim
𝑥→1−

(2𝑥 + 7) = 2(1) + 7 = 9.   

∴  lim
𝑥→1+

𝑓(𝑥) ≠ lim
𝑥→1−

𝑓(𝑥).   

∴  lim
𝑥→1

𝑓(𝑥) does not exist. 

 ∴ 𝑓(𝑥) is not continuous at 𝑥 = 1.  

Consider, 

 lim
𝑥→−2+

𝑓(𝑥) = lim
𝑥→−2+

(2 − 3𝑥) = 2 − 3(−2) = 8. 

𝑊ℎ𝑒𝑛 𝑥 = −2, 𝑓(𝑥) = 2 − 3𝑥 ∴ 𝑓(−2) = 2 − 3(−2) = 8.  

∴  lim
𝑥→−2+

𝑓(𝑥) = 𝑓(−2).  ∴ 𝑓(𝑥) is continuous from right at 𝑥 = −2.  

Again consider, 

 lim
𝑥→2−

𝑓(𝑥) = lim
𝑥→2−

(4𝑥 + 1) = 4(2) + 1 = 9. 

𝑊ℎ𝑒𝑛 𝑥 = 2, 𝑓(𝑥) = 4𝑥 + 1. ∴ 𝑓(2) = 4(2) + 1 = 9.  ∴  lim
𝑥→2−

𝑓(𝑥) = 𝑓(2).   

∴ 𝑓(𝑥) is continuous from left at 𝑥 = 2.  

Thus, the given function is continuous everywhere on [-2, 2] except at 𝑥 = 1.  

7. Find a, b so that the given function will be continuous for every 𝑥.  

                (i) 𝑓(𝑥) = {
𝑎𝑥 + 3,                𝑥 > 5
8,                           𝑥 = 5

𝑥2 + 𝑏𝑥 + 1,      𝑥 < 5
  

               (ii) 𝑓(𝑥) = {
√3,                                     𝑥 = 0

2sin (cos−1 𝑥),       0 < 𝑥 < 1
𝑎𝑥 + 𝑏,                             𝑥 < 0

  

              (iii) 𝑔(𝑥) = {
√𝑥−𝑎

𝑥−1
,     𝑥 > 1

𝑏,           𝑥 ≤ 1
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              (iv) If 𝑓(𝑥) is continuous at  𝑥 = 0 𝑎𝑛𝑑 𝑓(1) = 2, 𝑓𝑖𝑛𝑑 𝑎 𝑎𝑛𝑑 𝑏; where 

                        𝑓(𝑥) = {
𝑥2 + 𝑎,                 𝑥 ≥ 0

2√𝑥2 + 2 + 𝑏,    𝑥 ≤ 0
   

Solution: We have 𝑓(𝑥) = {
𝑥2 + 𝑎,                 𝑥 ≥ 0

2√𝑥2 + 2 + 𝑏,    𝑥 ≤ 0
  𝑎𝑛𝑑 𝑓(1) = 2.  

∴ (12) + 𝑎 = 2 ⇒ 𝑎 = 1.  

Now, 𝑓(𝑥) is continuous at 𝑥 = 0.  

lim
𝑥→0+

𝑓(𝑥) = lim
𝑥→0−

𝑓(𝑥) = 𝑓(0). ∴  lim
𝑥→0+

(𝑥2 + 𝑎)= lim
𝑥→0−

(2√𝑥2 + 2 + 𝑏) 

⇒ 𝑎 = 2√2 + 𝑏 ⇒ 𝑏 = 1 − 2√2.   

8. Let 𝑓 be defined for all 𝑥 ∈ ℝ, 𝑥 ≠ 2, 𝑏𝑦 𝑓(𝑥) =
𝑥2+𝑥−6

𝑥−2
.  

Can 𝑓 be defined so that function is continuous at that point? 

Solution: We have, a function is defined at point 𝑥 = 2.  

Now, 𝑓(𝑥) =
𝑥2+𝑥−6

𝑥−2
=

(𝑥−2)(𝑥+3)

𝑥−2
= (𝑥 + 3).  

Therefore, if we define 𝑓(2) = 5 𝑡ℎ𝑒𝑛  lim
𝑥→2

𝑓(𝑥) = lim
𝑥→2

(𝑥 + 3) = 5 = 𝑓(2).  

So that the function is continuous at 𝑥 = 2.  

9. Examine the continuity of 𝑓(𝑥) = √
𝑥−1

𝑥+3
 . 

Solution: Let ∅(𝑥) =
𝑥−1

𝑥+3
   𝑎𝑛𝑑 𝜑(𝑦) = √𝑦  then 𝑓(𝑥) = 𝜑(∅(𝑥)). By Composite function 

theorem, if ∅(𝑥) is continuous at 𝑥 and 𝜑(𝑦) is continuous at  ∅(𝑥)  then 𝜑0∅ is 

continuous at 𝑥. 

Consider  ∅(𝑥) =
𝑥−1

𝑥+3
 . We observe that for all values of 𝑥 except 𝑥 = −3 it is continuous. 

Further, 𝜑(𝑦) is continuous ∀ 𝑦 = ∅(𝑥) ≥ 0. 𝑖. 𝑒.
𝑥−1

𝑥+3
≥ 0. Which is possible only when 

(i) (𝑥 − 1) ≥ 0  𝑎𝑛𝑑 (𝑥 + 3) ≥ 0  𝑖. 𝑒. 𝑖𝑓 𝑥 ≥ 1 𝑎𝑛𝑑 𝑥 > −3 ∴ 𝑥 ≥ 1     and  

(ii) (𝑥 − 1) ≤ 0 𝑎𝑛𝑑 (𝑥 + 3) < 0  𝑖. 𝑒. 𝑖𝑓 𝑥 ≤ 1 𝑎𝑛𝑑 𝑥 < −3 ∴ 𝑥 < −3.  

Hence, 𝑓(𝑥) is continuous on (−∞,−3) 𝑎𝑛𝑑  [1,∞). 
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Definition: A function 𝑓: 𝐴 → ℝ is said to be bounded on A if there exists a constant 𝑀 >

0 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 |𝑓(𝑥)| ≤ 𝑀 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥 ∈ 𝐴.  

Theorem 11: (Boundedness Theorem)- 

Let 𝐼 = [𝑎, 𝑏] be a closed and bounded interval and 𝑓: 𝐼 → ℝ be continuous function on I. 

Then 𝑓 is bounded on I.  

Definition: Let 𝐴 ⊆ ℝ 𝑎𝑛𝑑 𝑙𝑒𝑡 𝑓: 𝐴 → ℝ be a function defined on A. We say that 𝑓 has an 

absolute maximum on A if there exist a point 𝑥1 ∈ 𝐴 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝑓(𝑥1) ≥ 𝑓(𝑥), ∀ 𝑥 ∈ 𝐴. 

And we say that 𝑓 has an absolute minima on A if there exist a point  𝑥1 ∈ 𝐴 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡  

                             𝑓(𝑥1) ≤ 𝑓(𝑥), ∀ 𝑥 ∈ 𝐴.   

Theorem 12: (Maximum – Minimum Theorem)-  

Let 𝐼 = [𝑎, 𝑏] be a closed bounded interval and let 𝑓: 𝐼 → ℝ be a continuous function on 

I. Then 𝑓 has an absolute maximum and an absolute minimum on I.  

Theorem 13: (Location of Roots theorem)- 

Let  𝐼 = [𝑎, 𝑏] be a closed bounded interval and let 𝑓: 𝐼 → ℝ be a continuous function on 

I. If 𝑓(𝑎) < 0 < 𝑓(𝑏)  𝑂𝑅   𝑓(𝑎) > 0 > 𝑓(𝑏) then there exists a number 𝑐 ∈

(𝑎, 𝑏) 𝑠. 𝑡. 𝑓(𝑐) = 0.  

Theorem 14: (Bolzano's Intermediate Value Theorem)- 

 Let 𝐼 = [𝑎, 𝑏] be a closed bounded interval and let 𝑓: 𝐼 → ℝ be a continuous function on 

I. If 𝑎, 𝑏 ∈ 𝐼 𝑎𝑛𝑑 𝑘 ∈ ℝ such that 𝑓(𝑎) < 𝑘 < 𝑓(𝑏) then there exists a point 𝑐 ∈ 𝐼 between 

𝑎 𝑎𝑛𝑑 𝑏 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝑓(𝑐) = 𝑘.  

Proof: Suppose that 𝑎 < 𝑏 𝑎𝑛𝑑 𝑙𝑒𝑡 𝑔(𝑥) = 𝑓(𝑥) − 𝑘 𝑡ℎ𝑒𝑛 𝑔(𝑎) < 0 < 𝑔(𝑏). By the 

location of roots theorem, there exists a point 𝑐 ∈ 𝐼 𝑤𝑖𝑡ℎ  𝑎 < 𝑐 < 𝑏 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 

 𝑔(𝑐) = 𝑓(𝑐) − 𝑘 = 0.  ∴ 𝑓(𝑐) = 𝑘.  

Now, suppose that 𝑏 < 𝑎 𝑎𝑛𝑑 𝑙𝑒𝑡 ℎ(𝑥) = 𝑘 − 𝑓(𝑥) 𝑡ℎ𝑒𝑛 ℎ(𝑏) < 0 < ℎ(𝑎). By the location 

of roots theorem, there exists a point 𝑐 ∈ 𝐼 𝑤𝑖𝑡ℎ 𝑏 < 𝑐 < 𝑎 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 

 ℎ(𝑐) = 𝑘 − 𝑓(𝑐) = 0.  ∴ 𝑓(𝑐) = 𝑘.   

Theorem 15: Let 𝐼 = [𝑎, 𝑏] be a closed bounded interval and let 𝑓: 𝐼 → ℝ be a continuous 

function on I. If 𝑘 ∈ ℝ any number satisfying  𝐼𝑛𝑓 𝑓(𝐼) ≤ 𝑘 ≤ 𝑆𝑢𝑝 𝑓(𝐼) then there exists 

a point 𝑐 ∈ 𝐼 between 𝑎 𝑎𝑛𝑑 𝑏 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝑓(𝑐) = 𝑘.  

Proof: By Maximum-Minimum theorem, there are points 𝑐1𝑎𝑛𝑑 𝑐2 𝑖𝑛 𝐼 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 

 𝐼𝑛𝑓 𝑓(𝐼) = 𝑓(𝑐2) ≤ 𝑘 ≤ 𝑓(𝑐1) = 𝑆𝑢𝑝 𝑓(𝐼). Hence, there exists a point 𝑐 ∈ 𝐼 𝑠. 𝑡.  

𝑓(𝑐) = 𝑘.  
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Example:  

1. Give an example of functions 𝑓 𝑎𝑛𝑑 𝑔 that are both discontinuous at a point 𝑐 ∈ ℝ 𝑠. 𝑡. 

(𝑎) The sum 𝑓 + 𝑔 is continuous at c.  

(b) The product 𝑓. 𝑔 is continuous at c.  

Solution: Let us define the functions 𝑓(𝑥)𝑎𝑛𝑑 𝑔(𝑥) as-  

𝑓(𝑥) = {
1,   𝑥 = 0
0,   𝑥 ≠ 0

  𝑎𝑛𝑑 𝑔(𝑥) = {
0, 𝑥 = 0
1, 𝑥 ≠ 0

 . Then both the functions are discontinuous at 

x = 0.  

(a) We have (𝑓 + 𝑔)(𝑥) = 𝑓(𝑥) + 𝑔(𝑥) = 1, ∀ 𝑥 ∈ ℝ, which is a constant function and 

hence it is continuous for all 𝑥 ∈ ℝ.  

(b) We have(𝑓. 𝑔)(𝑥) = 𝑓(𝑥). 𝑔(𝑥) = 0, ∀ 𝑥 ∈ ℝ, which is a constant function and hence 

it is continuous for all 𝑥 ∈ ℝ.  

2. Let 𝐼 = [𝑎, 𝑏] and let 𝑓: 𝐼 → ℝ be a continuous function such that 𝑓(𝑥) > 0 for each x 

in I. Prove that there exists a number 𝛼 > 0 𝑠. 𝑡. 𝑓(𝑥) ≥ 𝛼, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥 ∈ 𝐼.  

Solution: Since 𝑓 is continuous on closed and bounded interval I = [a, b]. By Max. – Min. 

theorem , there exists 𝑥1 ∈ 𝐼 𝑠. 𝑡. 𝑓(𝑥1) ≤ 𝑓(𝑥), ∀ 𝑥 ∈ 𝐼.  

Now, 𝑓(𝑥) > 0, ∀ 𝑥 ∈ 𝐼 ⇒ 𝑓(𝑥1) > 0. If we set  𝑓(𝑥1) = 𝛼 then 𝑓(𝑥) > 𝛼.  

Exercise 

1. By using the definition of limit of a function prove the following. 

(𝑖) lim
𝑥→1

(2𝑥 + 4) = 9   (𝑖𝑖) lim
𝑥→2

(
𝑥2 − 3𝑥 + 2

𝑥 − 2
) = 1   

(𝑖𝑖𝑖)  lim
𝑥→1

(𝑥3) = 1   (𝑖𝑣)  lim
𝑥→0

(
5𝑥 + 7

3𝑥 + 1
) = 7. 

2. Show that lim
𝑥→1

𝑓(𝑥) does not exist. Where 𝑓(𝑥) = {
𝑥 + 1 ,      0 ≤ 𝑥 < 1
2 ,                    𝑥 = 1
 2 − 𝑥 ,       1 < 𝑥 ≤ 2

 

3. If 𝑓(𝑥) =
|𝑥|

𝑥
 , 𝑥 ≠ 0, show that lim

𝑥→0
𝑓(𝑥) does not exist. 

4. Discuss the continuity of  𝑓(𝑥) = {
𝑥2−9

𝑥−3
 ,   0 ≤ 𝑥 < 3

4𝑥 − 6 , 3 < 𝑥 ≤ 6
 

5. Test the continuity of 𝑓(𝑥) =

{
 
 

 
 𝑥 ,         0 ≤ 𝑥 ≤

1

2

1 ,                 𝑥 =
1

2

1 − 𝑥 ,      
1

2
< 𝑥 < 1
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6. Examine for the continuity  (𝑖)  𝑓(𝑥) = {
tan−1 (

1

𝑥
)  ,    𝑥 ≠ 0

𝜋

4
 ,                    𝑥 = 0

     

 

                                                      (𝑖𝑖) 𝑓(𝑥) = {
1 + 𝑥 , −1 ≤ 𝑥 < 0

1 ,    𝑥 = 0
1 − 𝑥 ,   0 < 𝑥 ≤ 1

 

7. Draw the graphs of the following functions; 

 (𝑖)  𝑓(𝑥) =
1

4
𝑥2 − 𝑥  (𝑖𝑖)  𝑓(𝑥) =

1

9
𝑥2 − 𝑥   (𝑖𝑖𝑖)  𝑔(𝑥) = 3𝑥2 − 7    

(𝑖𝑣) 𝐺(𝑥) = √4 − 𝑥2   (𝑣)  𝑓(𝑥) =
𝑥2−4

𝑥−2
   (𝑣𝑖)  ℎ(𝑥) =

4

𝑥
    

(𝑣𝑖𝑖) 𝐹(𝑥) = 𝑥 − |𝑥|  (𝑣𝑖𝑖𝑖)  𝑓(𝑥) = 4𝑥2    (𝑖𝑥)  𝑓(𝑥) = 4𝑥2 + 2    

 (𝑥) 𝐺(𝑥) = |𝑥 − 2|    (𝑥𝑖) ℎ(𝑥) = |𝑥| + 2   (𝑥𝑖𝑖)  Consider the function 𝑓: [−3, 3] → ℝ 

defined by  𝑓(𝑥) =

{
 
 

 
 
 0,         − 3 ≤ 𝑥 < −2
 1 ,        − 2 ≤ 𝑥 < −1
 2 ,          − 1 < 𝑥 < 1  
3 ,                1 ≤ 𝑥 < 2
−2 ,             2 ≤ 𝑥 < 3

 Draw the graph of 𝑓(𝑥). 

 

Answers:  2. Continuous at =
1

2
 .    

                    3.  Discontinuous at 𝑥 =
1

2
 .    

                    4.  (i) Discontinuous at 𝑥 = 0.   (ii) Continuous at 𝑥 = 0. 

 

------$$$$$$$$$$$$$$$$$$-----  

  

 


