Unit 3: Real Numbers

In ancient India, the concept of real numbers was intertwined with the development of
mathematics and astronomy. The Sulba Sutras (circa 800 - 500 BCE) contained early references
to irrational numbers in the context of geometric constructions. Indian mathematicians like
Aryabhata (476 - 550 CE) and Brahmagupta (598 - 668 CE) made significant contributions,
including rules for arithmetic operations with zero and negative numbers.

e Notion of sets:
N = Set of all natural numbers (Positive Integers) ={1, 2,3,4,5, ...}
W = Set of all whole numbers ={0,1,2,3,4,5, ...}

Z = Set of all Integers={...,-3,—-2,-1,0,1,2,3,4, ...}
Q = Set of all Rational numbers = {S/ p,q €L, q+ O}

R = Set of all Real numbers = Q U Q¢;

Where, Q° is set of Irrational numbers are numbers. The real numbers which cannot be
expressed as a simple fraction of two integers.

C = Set of Complex numbers ={a + ib /a,b € R,i = V—1}.

The first known use of the notion of i (the imaginary unit) was by the Italian
mathematician Rafael Bombelli in his work "L'Algebra” published in 1572. He used iii to
handle the square roots of negative numbers while solving cubic equations, despite the broader
mathematical community initially being skeptical of imaginary numbers.

¢ Real Numbers in day - to - day life:

Studying real numbers is fundamental because they form the basis for most
mathematical concepts and are essential for understanding and solving real-world problems.
Real numbers allow us to measure, quantify, and analyze continuous quantities, making them
crucial for fields such as science, engineering, finance, and everyday decision-making. Mastery
of real numbers enables precise communication, critical thinking, and problem-solving skills
that are applicable in various academic disciplines and practical situations.



o Algebraic properties of Real numbers or Field axioms:

Two binary operations '+' and 'e’, called addition and multiplication respectively
satisfy the following axioms-

1.Fora,b € R,a+ b € R. Closure ness of '+'.
2.Fora,beRa+b=b+a Commutativity of '+'.
3.Fora,b,c € R, (a+b) +c=a+ (b+c) Associativity of '+".
4. For a € R there is a number 0 € R such that
a+0=0+a=a Existence of additive identity.
5. For every a € R there is anumber —a € Rsuch that a+ (—a) = (—a)+a =0
Existence of negative element /Additive inverse.
6.Fora,b e R,aeb € R Closureness of 'e'
7.Fora,b e R,aeb=bea Commutativity of e’
8.Fora,b,c ER,(aeb)ec=ae(bec) Associativity of'e'
9.For a € R there isa number 1 € R such that

ael=1ea=a Existence of multiplicative identity.

10. Forevery a # 0 € Rthereisa number% € R such that

ase (i) = (i) ea=1 Existence of multiplicative inverse.

11.Fora,b,c e R,ae (b+c) =aeb + ae+c Multiplication distributive over addition.
Definition:
A set which satisfies all above properties is called as a Field.
For example
1. A set of all real numbers (R) is a field.
2. The set of all rational numbers (Q) is a field.

3. The set of integers is not a field



Theorem 1:
(a) If a and z are any elements of R such that z + a = athenz = 0.
(b) If u and b # 0 are any elements of R such thatu e b = b thenu = 1.

(c) Ifaisany elementof Rthenae 0 =0=0ea.

(d)Ifa # 0and bin Rsuchthatasb = 1thenb ==,

a

(e) Ifa » b = 0 then either a = 0 or b = 0 or both are zero.

() Ifa,b arein Rsuchthata + b = 0thenb = —a.

Proof:

(@) Itisgiventhatz+a=a

we add (—a) on both sides of the above equation; which gives us
z+a)+(—a)=a+ (—a)

=z+ (a + (—a)) = 0, by axiom (Associativity of ‘+")
~z+0=0, by axiom (Existence of additive inverse )
~z=0. by axiom (Existence of additive identity)

(b) Since b # 0 there exist % in Rsuch thatb e % =1.

We are given thatu ¢ b = b.
Multiply both sides by 1/b.

(u.b).%:b.%
LUe (b . %) = 1, by axiom (8) and (10)
~uel=1,byaxiom (10)
~u=1. Byaxiom (9)
(c) Weknow that,1+0=1 by axiom (4)

Multiply by ‘a’ on both sides of the above equation and using axiom (11)

[tgivesus;ael+ ae0=a-el



=ael+ael=qael

= a+ ae0=a byaxiom (9)

Now, add (—a) on both sides of above equation we will get
(—a)+a+ae0=(—a)+a

> (a+(-a))+a+0=0

=>0+ae0=0

=>a+0=0.

Similarly; 0 ea =0

(d) Since a # 0 by axiom (10) there exist% € Rsuch thata -% =1.

We know that, b = 1 « b by axiom (9)
1
= (a . Z) b, by above
= (l . a) e b, by axiom (7)
a » 0y
= %o (a * b), by axiom (8)
= % e 1, by given hypothesis thataeb =1
~b= % By axiom (9)
(e) Suppose a # 0 then there exists é € Rsuchthat ae % = 1.
Now, we have given that a « b = 0 Multiply both sides by %
1 1
Z ° (a o b) = a o0
1 .
= (Z . a) e b = 0, by axiom (8) and (9)

= 1eb =0 byaxiom (10)
= b = 0. by axiom (9)

Similarly, we can prove thatif b # 0 thena = 0.



(f) We have given thata + b = 0.

Adding (—a) in both sides, we get
(—a)+(a+b)=(-a)+0

~((—a)+a) + b = —a byaxiom (3) and (4)
~ 0+ b =—a byaxiom (5)

-~ b =—a byaxiom (4)

Theorem 2: Let a, b € R then

(a) The equation a + x = b has unique solution x = (—a) + b in R.

(b) If a # 0 then the equation a ¢« x = b has unique solution x = (l) ebin R

a

Proof:

(a) We have given thata + x = b.

Adding (—a) in both sides,

(—a)+(a+x)=(—a)+b

((—a) + a) + x = (—a) + b by axiom (3)

~0+x=(—a)+ b byaxiom (4)

. x = (—a) + b, which is a solution.

To show the uniqueness, suppose there are two solutions (say) x;, x, .
~a+x, =banda+ x, = b.So, we need to show that x; = x,.
Subtracting the above equations, we get

X1 —Xx, =0

= X = Xy

(b)

We have given thata e x = b ...... (i)

anda #0 - EI%E]R%suchthataoizl.



Multiply both sides of equation (i) by~
fie@exn)=(2)ep
#(ea)ex=(3)eb

.-.1.x=(§).b

X = (%) b, which is the required solution.

Now, for uniqueness, suppose there are two solutions (say) x4, x,
~aex;=bandaex, =b.

Here, we need to show that x; = x,.
Subtracting these equations, we will get
ae(x;—x,)=0

= x1 —x, =0, since a # 0 given

=X = X,.

Theorem 3: If a € R then
@((1ea=-a

) —(-a)=a

@ CED(-D=1

Proof: Left as an Exercise

Theorem 4: Let a, b, c € R then

(a)Ifa;tOthen%;thnd

QR
Il
Q

(b)Ifaeb=aecanda # 0thenb = c.

Proof: Left as an Exercise



Example 1:

Forany a, b € R prove that

(DIf a+b=0thenb = —a. (i)(—-1)-a= —a.

Solution:

(i) Suppose,a + b = 0, adding (—a) to both sides, we get (—a) + (a + b) = (—a) + 0

~L.H.S.= ((—a) + a) + b, by axiom (3)

= 0+ b, by axiom (5)
= b, by axiom (4) ....... ™)

Now,R.H.S.=(—a)+0=—a ... @)

From (*) and (*), b = —a.

(ii) We know that 0 = 0 - a.

Also, (-1)+1=0..(a)and1-a=a ....(b)

=~ Consider,

O=O-a=(1+(—1))-a,by(a)
=1-a+(—1)-a,byaxiom (11)
=a+(—1)-a,by (b)

Adding (- a) to both sides, we get

-a+0=—-a+a+(-1a

=(—a+a)+ (—1a
s(—a+a)+(—Da=-a+0

~ 0+ (—1)a=—a+0,byaxiom (5)

= (—=1)a = —a, by axiom (4).



Example 2:
Ifa € Rs.t.a-a = athen prove that eithera = 0ora = 1.
Solution:

Supposea ER s.t. a-a=a

a’=a
a?—a=0
tala—1)=0

~ by Theorem 1(e),a =00ra—1=0

~a=0o0ra=1.

e Order Properties of R

Property 1: Closurness

Suppose S is a non-empty subset of R*

O;:1f a,b € Sthena+b €S.

0,:1f a,b € Sthena-b €S.

Property 2: Trichotomy Property

If a € R then exactly one of the following holds a € R*,a =0,—a € R™.

This property divides the set of real numbers R into three sets (which are
subsets of R) viz. Set of all negative real numbers, set of all positive real numbers and set
containing only 0 element. Thus, Set of real numbers is the union of three disjoint sets.
ie.R={R7}u{0}uU{R*"}.

@) If a € Rand a > 0 then we say that a is positive (strictly positive) real
number.

(i) If a € RYU{0}wewriteitasa >0, say that a is non-negative real
number.

(iii) If —a € R we write a < 0, say that a is a negative (strictly negative) real
number.

(iv) If —a € R~ U {0}, we write a < 0, say that a is a non-positive real number.



Property: Law of Trichotomy

If a and b are elements of R then exactly one of the following is true either
a<bora=bora>b.

Result: Suppose that a and b are real numbers then

6) Ifa—b€eR"thena>borb<a.
(ii) Ifa—beR*U{0}thena=borb <a.

Definition: The statement which involves order relation is called an Inequality.

Theorem 5:

Suppose a, b, ¢ are any elements of R.
(YIfa>band b > cthena > c.
(ii)Ifa>bthena+c>Db+c.

(iii) If a > b and ¢ > 0 then ca > cb.
(iv)Ifa > b and c < 0 then ca < cb.

Proof:

(i)Asa>band b >c
~a—b,b—c€Rthen by 0y
(a—=b)+(b—-c)=a—-ceR?"
=a>c.

(ii)As a>b
~a—beRbuta—b=(a+c)—(b+c)€eR
~a+c>b+c.

(i) Asa>bandc >0
~ by 0, cla—b)=ca—cbeR"
= ca > cb.

(iv) Asa>bandc <0
= by 0,,(=c)(a—b) =cb —ca € R*

=cb>cai.e.ca <cbh.



Theorem 6:

() Ifa € Rand a # 0 then a® > 0.
(i) 1 > 0.

(iii) If n € N thenn > 0.

Proof:

(i) Asa # 0 - by Trichotomy Property,a > 0 or a < 0.
Now, ifa > 0 thenby 0,,a®? =aea > 0.

Againifa < 0then—a >0 - a? = (—a) ¢ (—a) > 0.
(ii) Since 1 = 12 > 0 by (i) above, 1 > 0.

(iii) We will use Mathematical Induction on n.

Step 1: Take n = 1 then by (ii) above 1 > 0.

Step 2: Assume that resultis true forn = k.i.e.k > 0
Step 3: To prove the result for n =k + 1

Now, from Step 1 and Step2: 1 > 0and k > 0
~byO,k+1€RYandk+1>0.

Hence, by Mathematical Induction the result is true for alln € N.
Theorem 7:

If ab > 0 then either

(i)a>0and b > 0or

(ia<0and b <0.

Proof:

Here, note thatab > 0 = a # 0 and b # 0. By law of Trichotomy, either a > 0 or a < 0.

. 1 1
(i) Ifa> 0 then= >0 = b = () (ab) > 0.

.. 1 1
(i) Ifa < 0 then= < 0 = b = () (ab) < 0.
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Corollary: if ab < 0 then either
(i)a<O0and b > 0or

(ii)a>0and b < 0.

Example 3: Determine the set A of all real numbers x such that 2x — 3 < 6.

Solution: For x € A,we have 2x — 3 < 6,

Adding ‘3’ in both sides we have, 2x < 9.

9 . ) 9
ax < P Hence, the required set Ais A = {x eERix < 5}'

Example 4: Determine the set 4 = {x € R: x2 + x > 2}.
Solution: For x € A,we have x> + x > 2 ~x*+x—-2>0
S =1D(x+2)>0...(9

Case()(x—1)>0and (x+2)>0~x>1and x > —2.
But the (*) is true only for x > 1.

Case (i) (x—1) <0and (x+2)<0~x<landx < —2.
But (*) is true only when x < —2.

Hence, the required setAisA ={x e Rix > 1} U {x € Rix < —2}.

Example 5: Determine the set 4 = {x € R: x? > 3x + 4}.
Solution: For x € A,we have x> >3x+4 ~ x> —-3x—4>0
Sx—4)x+1)>0..(9

Case () (x—4)>0and (x+1)>0

& x >4 and x > —1. But the (*) is true only for x > 4.

Case (i) (x —4)<0and (x+1) <0

tx<4andx < —1.

But (*) is true only when x < —1.

Hence, the required setAisA ={x e Rix >4} U{x e Rix < —1}.

11



Property: Bernoulli's inequality-
Statement: If x > —1 then (1 + x)" > 1 + nx, for alln € N.
Proof: We shall prove this result by Mathematical Induction on n.
Step 1: Taken=1thenL.H.S.=1+x>1+x=R.H.S.
Step 2: Assume that result is true forn = k, k > 1.i.e.(1 + x)* > 1 + kx.
Step 3: To prove the result forn =k + 1
Now, (1 4+ x)*¥*1 = (1 + x)*(1 + x)

>(1+kx)(1+x)

=kx?+(k+1Dx+1

>1+ (k+ 1x.
51+ >1+ (k+ 1x
i. e. the result is true forn = k + 1.

Hence by mathematical induction the result is true for all n € N.

Theorem 8: If a, b are any elements of R and if a < b thena < %(a + b) < b.
Proof:

Since a < b adding a in both sides,

at+a=2a<a+b.... (i)

Also adding b in both sides,

a+b <b+b=2b....(ii)) From (i) and (ii) we will get,

~2a<a+b<?2b.

Hence, a < %(a +b) < b.
Corollary: If b € R and b # 0 then 0 < b < b.

Proof: Take a = 0 in above theorem.

Definition: If a,b > 0 € R then their Arithmetic Mean and Geometric Mean is given by
1
AM.= E(a+ b) and G.M.=+Va.b

12



Theorem 9: Ifa,b > 0 € RthenVa.b < %(a + b) and equality holds & a = b.

Proof:

Step I] Sincea > 0,b > 0 and a # b.
=+va>0,vb>0andVa#+b.
~(Va-vB) >0
~a—2VyaNb+b>0
>a-2Va.b+b>0
:mS§(a+b).

Now, if a = b(> 0) then both sides of inequality equal to a. Therefore it becomes
an equality, which proves that inequality holds fora > 0,b > 0.

Step II] Conversely, Suppose that a > 0,b > 0 and Va.b = %(a + b). Here, squaring
both sides and multiplying by 4.

~4a.b=(a+b)*=a*+2a.b+b?
~a?—=2a.b+b*=0.

>(a—-b)?>=0a=0>.

Absolute Value of a real number:
Definition: The absolute value of a real number x is denoted by |x| and is defined as-
X, if x>0
x| =10, if x=0;
—X, if x<O.

Note that: Absolute value of a real number is never negative i. e. it is always positive.
This is because, absolute value of a real numbers gives us the distance of that number from
‘0’ on real line.

13



Theorem 10:

() la.b| = |al|b|, for all a,bin R.

(ii) |a|? = |a?| = a?, for all ain R.

(iii)Ifc > othen |x| < cif and only if —c <x <c.
(iv) —|x| < |x| < |x|, for all x in R.

Proof:

(i) If either a or b is equal to 0 then the result is true.
Case (a) Ifa > 0and b > 0 thenab > 0

. |la.b| = ab = |a]|b|.

Case (b) Ifa < 0and b < 0thenab >0

~ |la.b| = ab = (—a).(—b) = |al|b|.

Case (c)Ifa>0and b < 0thenab <0

. |la.b| = —ab = a.(—b) = |al|b|.

Case (d) Ifa<Oand b > 0thenab <0

~ |la.b| = —ab = (—a).b = |al|b|.

Thus in all cases the equality holds good.

(ii) Since a? > 0,we have |a?| = |a.a| = |al|a| = |a|? = a?.i.e. |a| is the non-negative
square root of a?.

(iii) If |x| < c then we have by definition of absolute value, x < cand —x < ci.e.
x=>—candx<c.~. —c<x<cC

Conversely, if -c < x < cthenwe have,x < cand —c < x

i.eex<cand —x<c

= |x| < c. Hence the result is proved.

(iv) Put ¢ = |x| in above (iii) we will get, —|x| < |x| < |x].

14



Theorem 11: Triangle inequality:

Statement: If a,b in R then |a + b| < |a| + |b].

Proof: We have —|a| < |a| < |a| and — |b| <
Adding these we will get,

—(lal +1b]) = (a + b) < (laf + [b]).

|b| < |bl.

Using Theorem 10 (iv), we get |a + b| < |a| + |b].

Corollary: If a,b in R then

M|lal = bl] < la=bl  (@Dla— bl < lal +|bl.

Proof:

(i) We write a = (a — b) + b. Taking absolute value,

la| = |(a = b) + b| < |a — b| + |b|

= |a| = |b| < |a = b|... (*)

Now, b = (b — a) + a. Taking absolute value,
|b| =|(b—a)+al <|b—al+]al
=—|b—al +|a|l = —|a—b| + |al.

= —|a —b| < |a| — |b|....... **

From inequality (*) and (**), we will get,
llal = |bl| < la — bl.

(ii) Replace b by (-b) in triangle inequality,
~la+ (=b)| < lal +|-b]

~la—b| <|al + |b|, Since |-b| = |b]|.
Corollary: Ifa, a,, as, ..., a, € R then

la; +a; +az + -+ a,| < lag| +lay| + |az| +

ot
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Theorem 12: If a,b € Rthen |a + b| = |a| + |b| ifand only ifa. b = 0.
Proof:

PartI:

Let us suppose that |a + b| = |a| + |b| forall a,b € R.

Consider, |a + b|? = (a + b)? = a®? + 2a.b + b?..... (i)

and (Ja| + |b|)? = a® + b% + 2|a||b]..... (ii)

From (i) and (ii), |a||b| = abi.e.|a.b| = a.b..... (iii)

Now, on the contrary assume that ab < 0 .. |ab| = —a. b. With this, equation (iii)
becomes2a.b =0=a.b=0

= either a = 0 or b = 0. This gives the contradiction to the fact thata.b < 0.
Hence,a.b > 0.

Part II (Converse):

Suppose thata.b = 0.

Casel:a.b=0=>a=00rb=0.

Leta=0then|a+ b| =10+ b| =1|0| + |b| = |b].

Case2:a.b > 0> ceithera>0,b>00ra<0,b<0.

Here, in both the cases we will get, |a + b| = |a| + |b|.

Theorem 13:Ifa,b € Rand b # 0 then |a| = Va2.
Proof:

Ifa > 0thenla|l = aand Va? = a - |a| = Va2

If a < 0 then |a| =—aand\/a_=m=—a
~ here also |a| = Va2.

Thus, in both the cases we get, |a| = Va?.

Note that: |§| = % ,if y #0.



x+y| _ Ixl+lyl
- ||a| Ibl|*

Theorem 14: For x,y,a,b € R and |a| # |b|, |
Proof:

We know that 0 < |x + y| < |x| + |y| also

0 < |lal = |bl| < la + bl.

Againif0 <a<band 0 <c < dthenac < bd.
« |x +yl|lal = ]| < (Ix| + |yDla + b|

lx+y| lx|+1y]
la+b| = |lal-Ibl| "

Examples: Find real number x in set A which satisfy
MDI2x + 5] <9 (ii) |2x — 1| <13 (iii)) A = {x € R: |x — 3| < |x|}
() [x = 11 > [x + 1] (v) =] < 1 (v) I3 + 4] < |x + 2]
(i) [x = 2| + |x| =4 (vii)) [x + 1|+ [x = 2| =7 (x) |x| + [x + 1| <2
) |x?2 —1| < 4.
Solution:
(DForxedAe -9<2x+5<9
e -14<2x<4
e —T7<x<?2
A={xeR: —7<x<2}
(ii)Forxede —-13<2x—1< 13
o -12<2x< 14
e -6<x<7.
(iii) We know thatifa = 0,b = 0 thena < b © a* < b2
Also |a|? = a?,asa®?>0,Va € R.
Now, [x — 3| < |x| & |x — 3] < |x|?
wx?—6x+9<x?

& —6x+9<0



S —6x < -9

S x>

ol

3
S x> E

2+x
W[ <1e 242> 3+

e (2+x)2> (3 +x)?

©4+4x +x*>9+ 6x +x2

& —5>2x

@_?5>xi.e.x<_75.

(Vi) 13x+4| < |x+2|© Bx+4)? < (x+2)?
©8x2+20x+12<0
©2x2+5x+3<0
© 2x+3)(x+1)<0
<:>—§<x<—1.

(vii) Squaring both sides, we will get
(Ix = 2]+ |x])* = 16

& |x —2|% + |x]|? + 2|x — 2||x| = 16.
e (x-2)2+x2+2x(x—-2)=16

& 4x? —8x =12

©x2-2x—-3=0
Skxk+1D)kx-3)=0ox=—-1,x=3.
Hence, the set A = {—1, 3}.

(ix) Squaring, we will get

x2+2x(x+ 1D+ x2+2x+1<4©4x>+4x—-3<0
o 2x—1)2x+3) <0

©2x—1<0and2x+3>0
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@x<% andx>—§
. 3 1 3 1
l.e.—5<x<E.Hence,thesetA={xE]R:—E<x<E}.

(X) 4<x*-1<4e© -3<x*<5.
Case : —3<x*?©x*+3=>0

o x? > -3

©x=0
Case2:x2 <5 (x —V5)(x++5) <0
©x—V5<0andx +V5=0

& x <V5and x = —/5.

i.e.—V/5<x <65,

Hence, A = {x € R: —V5 < x < V5}.

e Geometrical Significance of |x| < C:

The absolute value of a real number x (|x|), Geometrically means "the distance of
x from the origin". Hence, |x| < C, Geometrically means "the real number x whose
distance from the origin is less than or equal to C".

The distance between two elements/numbers a and b or x and y in R is

la — bl or |x — y|.

Definitions:
Let S be any non-empty subset of R. Then

(i) Areal number "b" is said to be maximum element of S if b€ S and x < b, Vx € S.
This is denoted by b = Max S.

(ii) A real number "a" is said to be minimum element of S ifa € Sanda < x,Vx € S.
This is denoted by a = Min S.
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Theorem 15: A maximum (minimum) element if it exists is unique.

Proof: Let if possible, b and b; are two maximum elements for a set S.
By the definition, by < b ... (1) as b is Max.

b < b;...(2) as b;is Max.

Therefore from (1) and (2) we will get b = b;.

Similarly, we can prove for minimum element.

Definitions:

Let S be any non-empty subset of R. Then

(a) The set S is said to be bounded above if there exists a number v € R such that x <
v, for all x € S. Here, v is called an upper bound of S.

(b) The set S is said to be bounded bellow if there exists a number u € R such that
u < x, forall x € S.Here, uis called a lower bound of S.

(c) The set S is said to be bounded if it is both bounded above and bounded bellow.
A set is said to be unbounded if it is not bounded.
Examples:

1.T =[2,5.5)i.e.2 <x <55Vx€eT.

Here, every number is less than 5.5 . Hence it is an upper bound of T and every
number graeter than or equal to 2. Hence it is lower bound of T.

=T is bounded above as well as bounded below. Hence, T is bounded set.
2.5 =(-511]i.e.-5<x <11,Vx €S.

Here, every number is less than or equal to 11. Hence it is an upper bound of S
and every number graeter than -5. Hence it is lower bound of S.

= S is bounded above as well as bounded below.
Hence, S is bounded set.

3. The set R™ is bounded above but unbounded below.
4. The set R is unbounded above but bounded below.
5. The set R is unbounded set.
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e W. 0. P. (Well Ordering Principle):

Every non-empty subset of set of natural numbers has a minimum (least)
element. i.e.if S (¥ @) €S Nthen3am € S suchthat m < K, for allK € S.

Supremum and Infimum of a set:
Definition:

(a) Let S be any non-empty subset of R. A real number M is called the least upper bound
or Supremum (L. u. b.) for set S if ;

(i) M is an upper bound for S.

(ii) no number less than M is an upper bound for S. i. e for each € > 0 the number
M — ¢ is not an upper bound for S. It is denoted by M = SupsS.

(b) Let S be any non-empty subset of R. A real number m is called the greatest lower
bound or Infimum (g. 1. b) for set S if;

(i) m is a lower bound for S.

(ii) no number greater than m is an upper bound for S. i. e for each € > 0 the
number m + ¢ is not an upper bound for S. It is denoted by m = InfS.

Theorem 16: The Supremum (Infimum) for S is unique if it exists.

Proof:

Let if possible assume that S have two Suprema M and M'".
If M = M'. then we are through.

Therefore assume that M + M'.

= either M < M'or M > M'.

Now, suppose M < M'. Since M’ is a Supremum of S, By definition, M is not an
upper bound for S which is a contradiction to our assumption that M is Supremum of S.

Again if M' < M, since M is Supremum, by definition, M’ is not an upper bound for
S, which is a contradiction to our assumption that M’ is a Supremum of S.

~M=M.

Similarly, we can prove that the Infimum for the set S is unique if it exists.
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Theorem 17. If InfS and SupS for a set S exists then
InfS <x < SupS,vxe€S.org.l.b.<S<lLu.b.
Examples:
1.Let A = {2,4,6,8}. Sup(A) = 8,Inf(A) = 2.
2.1=1[49). Sup(I) =9,Inf(I) = 4.
Here, Sup(I) € I but Inf (I) € I.
3.B = (—2,5].Sup(B) = 5,Inf(B) = —2. Here, Sup(B) € B but Inf(B) ¢ B.
4.7 = (=3,7).Sup(Z) = 7,Inf(Z) = —3.Here, Sup(Z) ¢ Z and also Inf(Z) ¢ Z.
Note:
For a non-empty set S of R about the Sup. and Inf. there are four possibilities viz.
(i) Set S can have both Sup. and Inf.
(ii) Set S can have a Sup. but not Inf.
(iii) Set S can have Inf. but not Sup.

(iv) Set S have neither Sup. nor Inf.

In general,

[1] The set S = {x:a < x < b} i. e. Closed interval has Inf. as well as Sup. Moreover, both
areinS.

[2] The set S = { x:a < x < b} i. e. Open interval has Inf. and Sup. but both they are not

in S.
e The Completeness Axiom/Property of R:

Every non - empty set of real numbers that is bounded above has a least upper bound
(supremum).

Application:

[1] In Economics, the concept of a supremum is used in utility theory and the analysis of
consumer preferences. The completeness property ensures the existence of an optimal
consumption bundle.

[2] In Engineering, the design of systems often involves optimizing certain parameters
subject to constraints. The completeness property ensures that optimal solutions exist
when working within bounded regions.
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Remark:
(1) The set of all real number R is a complete ordered field.
(2) The set of all rational numbers Q is not complete.

For, E={x € Q:0<x,x?><2}. Then E is a non-empty subset of Q. The
Supremum of E is V2 but V2 & Q, as it is not a rational number. Therefore, for every
non empty subset of Q has no Sup. in Q. i. e. Q does not satisfy completeness property.

Hence, Q is a field but not complete ordered field.

e Archimedean Property:
Statement: If x,y € R,x > 0 then for any y € R3n € N such that nx > y.

Proof:
If y < 0 then the theorem is obvious. Now, if y > 0. To show that; 3 n € N such that
nx > y. Then on the contrary assume that nx < y,vn € N.

Consider, the set S = {nx:n € N} € N is a non-empty set, which is bounded above.
Hence by Completeness axiom, S has a Supremum. Let it be M. i.e. M = Sup(S).

Therefore, by the definition of Sup(S), nx < M,vn € N
>n+1)x<M,Vn€EN.
>nx<M-x,Vn €N.

This shows that M — x is also an upper bound of Sand M — x < M, a contradiction
to the assumption that M is a Sup(S).i.e.nx < y,¥Vn € N is wrong.

Therefore, nx > y,vn € N.

Corollary 1: If y € R then there exists n € N such that y < n.
Proof: Take x = 1 in Archimedean property.

Corollary 2: Let x be a positive real number. Then

(@)  There existsn € N such that 0 < % < x.
(b)  There existsm € Nsuchthat m—1<x <m.
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Theorem 18: Density Theorem:

If x and y are real numbers such that x < y then there exists a rational number r €
Rsuchthatx <r <y.

OR
Between any two distinct real numbers there is a rational number.
OR
The set Q (set of all rational numbers) is dense in R.
Proof:
Here, x > 0.
~wehave 0 <x<y=y—x>0.
Now by Archimedean property, there exists n € N such that n(y —x) > 1
i.e.ny —nx >1..().
Applying (b) of [Corollary 2] to nx > 0.
We have,m € Nsuchthatm—1<nx<m
~m < nx + 1 < ny since by (i).

:>nx<m<ny:>x<%<y
lLex<r<y, r= %,arational number.

Corollary 3: If x and y are real numbers such that x < y then there exists an irrational
number z € Rsuchthatx <z < y.

Proof: Apply density theorem to real numbers \/% and \7—5 . We will get a rational number

x y
riOsuchthatﬁ <r<\/—§=>x<\/§r<y

l.ex<z<y,z= V2r is an irrational number.
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Examples:

1. Show that V2 is not a rational number. OR Show that there does not exists a rational
number x such that x* = 2.

Solution: We will prove this by Contradiction. Let if possible assume that there exists a

2
rational numberg such that (S) = 2.

As Sis a rational number, we have p,q € Z,q # 0 and (p,q) = 1.

2
Now, (S) = 2 = p? = 2q¢*... (a). Here, R. H. S. is an even number

=~ L. H.S.is also an even number. i. e. p? is even= p is also even.
Hence, take p = 2m, for somem € Z .... (*)

= p? = 2m?... (b). From (a) and (b) we have,

2q% = 4m? = g% = 2m? which is even. Therefore, g2 is even
= q is also even number.i.e.q = 2n, for somen € Z .... (**).

Now from (*) and (**) we see that p and g both have 2 as a common factor. i. e. (p,q) =
2, which is a contradiction to our assumption that (p, q) = 1. Thus, there does not exists
a rational number whose square is 2.

2. Prove that (i)v21 is not rational numbers.

Solution: suppose V21 is a rational number.

,-,%:Jﬁ,a,beZb¢0and(a,b)=1-

© =21 > a? = 21.b% = 21 divides a’.

Now, the factors of 21 are 1, 3, 7. Let us consider a factor 3 of 21.
As 3 divides 21b? -~ 3 divides a?. Therefore, 3 divides a also.

= a = 3¢, for some c an integer ... (a) - 21b% = 9¢? .. 7b? = 3¢?
~ 3 divides 7b? .. 3 divides b* = 3 divides b.

= b = 3d, for some d an integer. ... (b).

From (a) and (b) we see that 3 is a common factor of both a and b.

i.e. (3, b) =3, a contradiction to the fact that (a,b) = 1.

Thus, V21 is not a rational number.
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3. Prove that v/3 + v/7 is not a rational number.
Solution:

On the contrary suppose that +/3 + /7 is a rational number.

§=ﬁ+\/7;p,qez,q¢0and(p,q)=1-

P = (V3+V7) = p? = (10 + 2v21)q? = 2(5 + VZ1)? ... (i)

P
This shows that 2 divides p? = 2 divides p. . p = 2m, for some m € ZL.
- p? = 4m?.... (ii). From (i) and (ii) we have,

2(5+V21)q? = 4m? = (5 +21)q? = 2m?

= 2 divides(5 +v21)q* = 2 divides(5 + V21) or ¢°.

But 2 divides(S + \/ﬁ) is not possible. . 2 divides q* = 2 divides q.
Hence, take q = 2n, for some n € Z .... (iii).

From (ii) and (iii) we see that 2 is a common factor between p and q.
i.e.(p,q) = 2,acontradictionto (p,q) = 1.

Thus, V3 + V/7 is not a rational number.

4. Find the rational number r such that

() V2 <7 <3 (i) V3 <r <5 (i) V10 < r < V11.

Solution:

(i) LetvV2 <1 <+/3 - 2 <r? < 3.Here, % can be 2.25
=>r =15 =% . {Note that this is not unique rational no. between v2
andv3} 2 < % <3.

(i) LetvV3 <7 <+/5. 3 <r? < 5.Here, % can be 2.56
>r=16= g.{Note that this is not unique rational no. between v/3 andv/5.
23 <2<y

(iii) LetvV10 < r <11+ 10 < r? < 11. Here, r? can be 10.24

=>r=32= % . {Note that this is not unique rational no. between v10

andV1L. - V10 < 15—6 < V11.
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5. Find the Sup. and Inf. of the set S = {% ‘n € N}.

Solution: We knowthat1 <n -~ 0< % <1,vn€N.

Hence, 0 is the lower bound of S and 1 is the upper bound of S.

Therefore, Sup(S) =1 and Inf (S) = 0.

6. Find the Sup. and Inf. of the following sets
@QA={xeR:2x+5>0}

(b)B ={x € Rix + 2 > x?}.

Solution:

(@) Forxe R,LA={x€R:2x+ 5> 0}
= {x eERx > —E}.
2
Therefore, Inf(4) = — g and Sup (A) does not exist.

(b) We have, B = {x € R:x + 2 > x?}
={xeR:x?—x—2<0}
={xeR:(x—-2)(x+1) <0}
={xeR-1<x<2}

Therefore, Inf(B) = —1 and Sup(B) = 2.

7. Find the Sup. and Inf. for the sets, if exists:

@ {-1,3,2,5,7,9,12). (ii) {—1,—1 -3,-3 } (iii) {%n € N}.

2

J

W {1+ nen,®{() men).od 3+ () nen}
Solution:

(i) Sup =12, Inf. = -1. (ii) Sup =0, Inf. = -1.

(iii)Sup = 1/2, Inf. = -1. (iv) Sup=3/2,Inf. = 0.

(v) Sup =1/2, Inf. = 0. (vi) Sup =11/3, Inf. = 3.
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e Neighborhood of a Point/ real number:

If aeRanddé >0 be a real number. Then &6- nbd of a real number
a; denoted by Ns(a)or N(a,§) is defined as-

Ns(a) =N(a,8) ={xeR: |x —a| <}
i.e.x €ENs(a) © |x—al<§
©-06<x—a<é
Sa—-6<x<a+d
S (a—6,a+9).
¢ Deleted Neighborhood of a point/ real number:

Let a€ Randd >0 be a real number. Then 6- nbd of a real number
a; denoted by Ng(a)or N'(a, §) is defined as-

N's(a)=N'(a,6) ={xeR: |x—a| <§,x #al.
i.ex€Ngla)e|lx—al<bx+a
o - f<x—a<dx+a
Sa—-0<x<a+dx#a

e (a—6,a)VU(a,a+ ).

[llustration: Find Ns(a) and N's(a),if a = =3 and § = 2.
Solution:
Here, given that a = =3 and § = 2.
Ns(a) =N(a,6) ={x €ER: |x —a| < &}
2 Ny(=3)=N(-32)={x€R: |[x—(-3)| <2}
=-2<x-(-3)<2
=-5<x<-1

= (=5,—1).
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N's(@)=N'(a,8) ={xER: |x—al <8 x+al
~N',(-3)=N'(-3,2) ={xeR: |x—(-3)| < 2,x # -3}
=-2<x—-(-3)<?2
=-5<x<-1
= (=5,—-3) U (-3,-1).

Exercise

1. Draw the graph of the function f(x) = |x — 2|
2. If x and y are two real numbers then prove that [x + y| < |x| + |y|.
3. Draw the graph of the function f(x) = (x + 1)2. State the intervals in which it is
increasing and decreasing.
. State the order axioms of real numbers.
. Find the rational number between (i) V5 &6 (ii) V6 &7

4
5
6. For any two distinct, positive real numbers a and b, prove that vVab < % (a+b).
7
8
9

Solve |3;x| <l1lVvVxe R, x#-2.
2+x
. State the field axioms of set of real numbers.
. Find all real numbers x that satisfy the inequality |;—;€| <1, x# -3

10. Determine the set A = {x € R: [x — 1] < 0.5}.

11. Find all real numbers x that satisfy the inequality |x? — 1| < 3.
12. State the completeness property of R.

13. Determine the set A = {x € R: |2x — 3| < 5}.

14.1f x € R then show that there exists n, € N such that x < n,,.
15. Show that between any two distinct real numbers there exists a

rational number.

16.Find 1. u. b.and g. 1. b. for the set § = {(_;)n

‘n e N}.
="
n

17.Find Infimum and Supremum of the set S = {1 — ‘neE N}.
18. Determine the set A = {x € R : x? > 3x + 4}.
19. State order axioms for set of real numbers.
20. Prove that for x,y € R, ||x| — |y|| <|x—yl.
21.Find all real numbers x that satisfy the inequality
lx| + |x + 1] < 2.
22.Solve the inequality [3x + 4| < |x + 2|
23.Find the greatest lower bound and least upper bound of the set
n+1

5={(—1)n+—.neN}.

n+2
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24. Find the greatest lower bound and least upper bound of the set
s=f-i7-1um 1}

3’4’ 5’6’ 7
25. Solve the inequality 4 — 7x < 3x — 16.
26. Find the Supremum and Infimum of the set S = {nT_l N e N}.

27.1f x is positive real number then prove that for any real number
y there exists a natural number n such that nx > y.

28. Find the Supremum and Infimum of the set S = {1 - % NS N}.

29. Define absolute value of areal number. If a = 0 then prove that
|x| < a ifand only if —a < x < a.
30. For x and y any two real numbers, prove that

|x +y| < |x| + |y|. Hence prove that |x — y| < |x]| + |y].

31.Determine theset A={x e R: 12x + 3 < 7}.

32.Find the Supremum and Infimum of the set A, if exist, where
A=1{-1,3,2,0,9,12}.

33. Find the domain and range of the function y = V25 — x?2.

34. Sketch the graph of the function f(x) = x2,x € [—1,1].

35.Forall a, b in R prove that |a + b| < |a| + |b]| .

36. Find all x € R that satisfy the inequality [4x + 5] < 19.

1 n
37.Find Supremum and Infimum of the set {(E) NS N}.

38.Ifc e Rand 0 < ¢ < 1thenshowthat0 < c? <c¢ < 1.

39. State the density theorem.

40. Find the range of the function f(x) = x2 + 1,x € R.

41. Find all real numbers that satisfies the inequality |x — 1| < [x] .

42.Find the Supremum and Infimum of the set
{xeER:x+2>x?}.

43. Determine the set A = {x ER:x< i ,x > 0}.

44, Find the domain of the function (x) = -

x-3"
45. State and prove the triangle inequality for real numbers. Hence
prove that |a — b| = |Ia| + |b||, foralla,b € R.

46. Draw the graph of the function f(x) = 3x% — 7.

-$$$$$$$$$ -
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Unit 4: Limits and Continuity
Introduction:

In this chapter, we are going to have revision of function, domain and range of a
function along with some of the example. Define cluster point, deleted neighborhood of
a point, the limit of a function of one variable. Examples of function, properties,
theorems. Define the continuity of a function at a point and on an interval. Some
theorems and examples on continuity.

Definition: Function- A function from a set A to set B is a relation which associates to
every element in set A unique element in set B. It is denoted by f: A — B.

The set A is called domain and the second set B is called co-domain of the function.

More clearly, domain of a function is the set of all values of the variable in Set A
for which the function will be well defined.

Range of a function: If f: A — B is a function then the set denoted by R(f); defined as
R(f) = {f(x):V x € A} is called range of function f.

Note that the domain assumed to be a subset of set of Real numbers which is
called as Natural domain.

Examples:

Find the natural domain for each of the following function
@) fx)=x2+2 (i) f(x) = ﬁ (iii) g(x) = V1 + 6x (iv) h(x) = V1 —x?

Solution: (i) Here, given function f(x) = x? + 2 is well defined for all values of x to be
real numbers. Therefore, the domain of function is set Ri. e. (—o0, o).

(ii) Here, the given function f(x) = x_i3 is not defined at x = 3.
Therefore, D(f) = { x € R:x # 3}.

(iii) In this case for g(x) = V1 + 6x, we know that square root exist if and only if the
quantity under square root is non - negative.

D(g)={xeR:1+6x=0}= {xE]R:xZ —%}= [—%,oo).

(iv) Here also,
Dh)={xeR1-x220}={xeR:1>x22>0, }.

—xeR-1<x <1}=[-1,1]



¢ Rule to find the range of a function:
Step 1: Puty = f(x).
Step 2: Solve the relation in x and y for x, instead of y.
Step 3: The range is the set of all real numbers y that can be solved for x.
Examples:

1. For the following function, find the range

D fO) =x*+2Df(x) = ﬁ (iiD)g(x) = V1 + 6x (iv) h(x) = V1 —x?
Solution:

() Puty = f(x) = x% + 2

Sxl=y—20x=4y—2.
Hence, R(f) ={y e Riy — 2 = 0} = [2, ).
(i) Lety = f(x) =ﬁ :>x=§+3.
Thus, R(f) ={y € R:y # 0} = R — {0}.
(iii) Let y = g(x) = V1 + 6x
=>y2=1+6x ~x=>—,y2>0.
Therefore, R(g) = {y € R:y? > 0} = (—o0, ).
(iv) Lety = h(x) = V1 — x2
>y2=1—-x%y>0
axt=1-y2ox=+/1-y%y=>0.

Hence, R(h) = {y € R:y? < 1} = [0, 1].



2. Find the domain of the functionf (x) = vx + 7 — Vx2 + 2x — 15.

Solution: We have f(x) = Vx + 7 — Vx2 + 2x — 15.

Here, it is defined iff x + 7 > 0 and x? + 2x — 15 > 0.

sx=—-7and (x+5)(x—3)=0.

()x=—-7and (x+5)=0,(x—3)=0

(ii)x=—-7and (x+5)<0,(x—3)<0.>x=-7andx =3 orx < —5.

Thus, D(f) ={x €Rix > -7 and (x =3 or x < —5)}
={xeERx>—-70r—7<x<-5}

= [3,) U [-7,-5].

3. Find the range of the function f(x) = 32;: :
Solution: Lety = f(x) = 32;:: ayxl+y=2x+1

~ yx? — 2x + (y — x) = 0; Which is a quadratic equation in x with ‘y’ being coefficient.

x = —(zi L) ,y#0and x = —(1i ) ,y # 0.
2y y

This can be solved ifand only if 1 —y2 +y >0
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Thus,R(f)={y€[R{:y2—y—1S0}=[

Absolute Value function:

The absolute value function f: R = R is defined by

x, x>0
f(x)=40, x=0
—x, x <0.

The number |a| is called absolute value of a. The range of this function is [0, ).

Piecewise Function: Piecewise functions are common in mathematics, physics, and
engineering to model situations where a process or relationship changes over different
intervals.



Step function: It is a piecewise function where it has jumps from one value to another
value. i. e. A stepwise function, also known as a step function, is a piecewise function
that remains constant within each interval of its domain.

Increasing and decreasing function:
Let f be a function defined on [ = [a, b]. Let x4, x, € [a, b]
(i) f is said to be increasing on I'if f(x;) > f(x3), x1 > x5.

(ii) f is said to be decreasing on Lif f(x;) < f(x3),x; > x;.

Even and Odd function:

A function y = f(x) is called Even function if f(x) = f(—x) and 0dd function if
f(=x) = —f(x), for every x in domain of the function.

¢ Note that the graph of the Even function is symmetric about the y - axis and the
graph of the Odd function is symmetric about the x - axis.

e The sum or difference of two even functions is even. The product of two even
functions is even.

e The sum or difference of two odd functions is odd. The product of two odd
functions is even, while the product of an even function and an odd function is odd.

e A function can be both even and odd only if it is the zero function, f(x)=0 for all x

e A function can be neither even nor odd. For example, f(x) = x + 1 does not

satisfy the conditions for either evenness or oddness.

Limit of a function
Definition: Cluster Point: -

Let A € R. A point ¢ € R is a cluster point of A if for every
& > 0 there exist at least one pointx € 4,x # ¢ s.t.|x — c| < 4.

e A point c is said to be cluster point of the set A if every deleted - neighborhood
N's(c) = (c — §,¢ + 6) of c contains at least one point of A.i.e. Ng(c) N A # .

Remark:

e The point c may or may not be in A.

e If a function is discontinuous at a cluster point, it means the limit does not exist,
or it does not equal the function's value at that point.

e C(luster points, also known as limit points or accumulation points, play an
important role in the study of limits and continuity in real analysis and topology.



Examples:
1. The set of natural numbers has no cluster points.

Solution: The set of natural numbers has no cluster points because there is no real
number around which the natural numbers accumulate; each natural number is isolated
with gaps between them. Consequently, no point has natural numbers arbitrarily close
to it.

2. Finite set has no cluster points.

Solution: A finite set has no cluster points because there are only a limited number of
isolated points, with no point having other points arbitrarily close to it. Cluster points
require an infinite accumulation of points around them.

3. Let A = {1, 2} then A has no limit points.

Solution: Take 6 =

N |-

,c=1. Then Ng(c) = (c—8,c+6) —{c} = G,g) — {1}

i 1 3
ANy NA= [(E'E) - {1}] n{1,2} = .
Therefore, 1 is not limit point of A. Similarly, 2 is also not limit point of A.

4. Let A= (1, 2) then 1 and 2 are limit points of A.

Solution: Take § =

N |-

,c=1.ThenNg(c) = (c—=6,c+6) —{c}
()
ANy NA= [(%g) - {1}] n(1,2) # 0.

Therefore, 1 is a limit point of A. Similarly, 2 is limit point of A.

Here, every point of A is a limit point of A. Except the end points 1 and 2 are
the limit points of A which does not in A.

Deleted neighborhood of a point- Let c € R and § > 0 be any positive real number. Then
deleted neighborhood of a point ¢, denoted by Ng(c)or N'(c, §); is defined as

Ng(c) =N'(c,6) ={x eR:0< |x —¢c| < 6}
={xeRic—d<x<c+6d,x+#c}
={xeERic—-F<x<corc<x<c+46}
={xeERc—-6<x<clu{xeRic<x<c+6}

=(c—6,c+6)—{c}.



Example: Find deleted 3 nbd. of 1.
Solution: Here, § = 3 and ¢ = 1.
“N'(,8)=((=-6c+6)—{c}=01-3,1)u(1,1+3)
=(-2,1)u(1,4)

=(-2,4) —{1}.

Definition: Limit of a function-

Let f(x) be a function defined on ACR and let c be a cluster point of A.
A number [ € R is called a limit of function f(x) at x = c if for givene > 03§ > 0s.t.

XEAOL|x—c|<d=2|f(x) -1 <e.

We will write this as lim f(x) = L.
X—C

Remark:
1. The value of § depends on ¢.
2. The inequality 0 < |x — c|is equivalent to saying that x # c.
3. 3613} f(x) = lis equivalent to
(a) f(x) Approaches to [ as x approaches to c.

(b)) f(x) >l »asx - c.

4. If limit of f at x = c does not exists then we say that f(x) diverges at x = c.

Theorem 1: If f: A —» R and c is a cluster point of A then f (x) has only one limit at c.

OR
Show that limit of a function is unique if it exists.

Proof: Let if possible [;and [, be two limits of a function f(x) at x = c.

By the definition of limit, for given € > 0,3 §;,6, > 0 s.t.
xeA,o<|x—c|<51=>|f(x)—11|<§ ............ (1) and
X E€A0<|x—cl <8 = f() = L] <% s (2).

Let § = min{d;, 6,} then both eqn (1) and eqn (2) holds whenever 0 < |x —¢| < §.



Claim: we need to show that l; = [,
For consider,
=Ll =10f() = 1) = (FC) = I < If () = LI+ [f (%) = L]
<-+-=e

Therefore, whenever 0<|x—c|<§andx € A, we have |l; —,| < e.
Since € > 0 is arbitrary, this is not possible. Therefore, we have [, — 1, = 0= 1; = [,.
This shows that limit of a function if exist is unique.

Examples: Using the definition, show that

@ lim(x? +1) = 2. (i) lim (“5) —4

—-—1 \2x+3
(iid) lim == = ~ (iv) lim(x? + 4x) = 12.
Solution:
() Letf(x) =x*+1, here l=2,c=1.
We want to make |f(x) — 2| < & by taking x sufficiently close to c = 1.
Consider the deleted §-nbd of c=1. (Take 6§ = 1).

Say S=(c—8,c+6)—{1}=(0,2) — {1}.

Here, |x —c| < § means |x — 1| < 1.......... (D
Consider,

f(x) =2 =1x24+1=-2|=[x2=1| =[x+ 1||lx = 1] ...c..... *
Now,inS, x>0=>x+1<3=|x+1| <3....... (2)

With this eqn * becomes, |f(x) — 2| < 3|x — 1].
But we need 3|x—1|<e:>|x—1|<§ ............ (3).
From eqn (1) and eqn (3), we will choose § = min {1, 2}

Then |f(x) — 2| < e,whenever 0 < |x — 1| <6 = lirri(x2 +1) =2
X—



(i) Let f(x) = ﬂ, here |l =4,¢c = —1.

2x+3

We want to make |f (x) — 4| < € by taking x sufficiently close to ¢ = -1.
Consider the deleted §-nbd of c = -1. (Take § = 1).
Say S=(c—6,c+6)—{-1} =(-2,0) — {-1}.

Here, |x —c| < § means |x — (—1)| < 1... (1)

Consider,
_ _ | x+s _|x+5-4@2x+3)] _ |—7x—7| _7 |x+1]
f () — 4] = |2x+3 4| - 2x+3 T lax+3 | 2° ‘x+§| """""
Now,inS, x> —-2=2x+3>15>—<1 &+ —5<4 ... 2)
2x+3 ‘x+5|

With this eqn * becomes, |f(x) — 4| < %.4|x +1| = 14|x + 1].
But we need 14|x+1|<£:>|x+1|<i .......... (3).

From eqn (1) and eqn (3), we will choose § = min {1,%}.

Then |f(x) — 4| < e, whenever 0 < |[x + 1| < §

x+5
= lim =
x——12x+3

(iii) Let f(x) = =—, here | =

1+x

N |-

,c=1.
We want to make |f(x) - %| < ¢ by taking x sufficiently close to c = 1.

Consider the deleted §-nbd of c = 1. (Take § = 1).

SayS =(c—6,c+6)—{1} =(0,2) — {1}.

Here, |x —c| < § means |x — 1| < 1.......... (D
Consider,
| x 1 o |2x—iox| | x—1 | [x—1]| "
|f(x) 2| Tl 2| T2+ | |2(x+1) T o2lx+1] T

. 1
o [x+1]

Now,inS,x>O=>x+1>1=>ﬁ<1.

With this eqn * becomes, |f(x) - §| < Ixz;ll

But we need lxz;ll<1:>|x—1| < 2€iiiinnn 3).



From eqn (1) and eqn (3), we will choose § = min{1, 2¢}.

Then |f(x) —%| < g, whenever 0 < |[x — 1| < § = liniﬁ - %
X

(iv) Let f(x) = x*+4x, here | =12,c = 2.
We want to make |f(x) — 12| < & by taking x sufficiently close to c = 2.
Consider the deleted §-nbd of c = 1. (Take 6§ = 1).

Say S=(c—8,c+6)—{2}=(1,3) —{2}.

Here, |x —c| < § means |x — 2| < 1......... (D
Consider,

If(x) — 12| = |x® + 4x — 12| = |x + 6]]x — 2] .......... *
Now,inS, x >1=2x4+6=9=|x+6|/<9..... (2)

With this eqn * becomes, |f(x) — 12| < 9|x — 2| .

But we need 9|x—2|<£:>|x—2|<§ ............ (3).
From eqn (1) and eqn (3), we will choose § = min {1, g}
Then |f(x) — 12| < &,whenever 0 < [x — 2| < § = }Cilg(xz + 4x) = 12.

Examples: Prove that

() lim(x? + 4x) = 5. (ii) 1im2(x2 + 3x) = —2. (iii) ling(x2 + 2x) = 15.
xX—>— x—

x-1

—9x2+4)
=z.

2x2+3) 3
3x+2

x+5

(iv) lim(

x—0

=2. (v) 1im(

x—0

—9x243x
3x+2

Solution: (iv) Let f(x) = ( ) here | =2,c = 0.
We want to make |f(x) — 2| < ¢ by taking x sufficiently close to ¢ = 0.
Consider the deleted §-nbd of c = 0. (Take 6§ = 1).

Say S=(c—6,c+6)—{0} =(-1,1) — {0}.

Here, |x — c| < § means |x — 0] < 1........... (1)

Consider,

FG) -2 = |(Z222) - 2| = | (- Z22)| = |-3x| = 3]

3x+2 3x+2



Now,inS§S, x > —1= 3|x| < 1, .......... (2)
With this eqn* becomes, |f(x) — 2| < 3|x].
But we need 3|x| <e= |x| < § ........... 3).
From eqn (1) and eqn (3), we will choose § = min {1, —}.
Then |f(x) — 2| < &, whenever 0 < |x — 0| < §
» lin (Z5) = 2

2x243
x+5

(V) Let f(x) =

, here l==,c=0.

ulw

We want to make |f(x) - §| < ¢ by taking x sufficiently close to c = 0.

Consider the deleted §-nbd of c = 0. (Take 6§ = 1).

Say S=(c—6,c+6)—{0}=(-1,1) — {0}.

Here, |x — c| < § means |x — 0] < 1........... (D
Consider,
3 2x243 3 10x2-3x 10x-3 10x+50
Y I ) = <
|f(x) 5| (x+5) 5| | 5(x+5) |5(x+5)| |x| - |5(x+5)| |x|
< 2|x| e *
But weneed 2lx|<e=|x|< 2 ............. (3).

From eqn (1) and eqn (3), we will choose § = min {1,2}.

Then |f(x) —§| < g,whenever 0 < |x — 0| < &

. 2x%+43 3
= lim ==,
x—0

Definition: Let A € R, f: A — R be the function and c be the cluster point of A. We say
that the function f is bounded on neighborhood of c if there exists a §- nbd of c and a
constant M > 0 s.t.

If(x)| < M,V x € An Ng(c).

10



Theorem 2: If A € Ranf f: A = R has limit point at x = c in set of real nos. then f is
bounded on some nbd of c.

Proof: Let lim f(x) = L.
X—C

By definition; for givene >0,36 >0s.t.0<|[x—c¢c| <6
= |f(x)—-L| <e.
Consider, |f(x)| — |L] < |f(x) — L| < &,whenever 0 < |x — c| < 6.

20<|x—c|<d=>|f()]—IL] <e.
S|f)|<|l+e=2|f)|<M;M =]l +e¢.
Therefore, f(x) is bounded on Ns(c). Take M = Sup{f(c), |L| + £}.
Then if x € AN Ng(c) = |f(x)| < M. i.e. f is bounded on Ng(c).
Theorem 3: Algebra of limits-
Let A< Rand f,g be functions on A to R. If cc € R is the cluster point of A and
}Ciinc f(x) = l,}ci_r}g g(x) = mthen
@) lim(f(x) £ g(x)) =lim f(x) +limg(x) =l + m.

x—>¢ x—c x—>¢

(i) lim(f (). g()) = lim £ (x) .lim g (x) = Lm.

(iii) Li{)ré(k. f(x) = k. lim f () = ke L.

fO\ _ Imfex) L
(g(x)) ,m#0,g(x) #0,Vx €A

(iv) lim = limge ~ m

X—C

Theorem 4: Let A C R, f: A = R be a function and ¢ € R be a cluster point of A. If a <
f(x) <b,Vx€Ax+candif limf(x) exists then a < lim f(x) < b.
X—C xX—C

Theorem 5: (Squeeze Theorem) If A S R, f,g,h:A = R be a function and c € R be a
cluster point of A and If f(x) <g(x) <h(x),Vx€Ax+cwithlimf(x)=L=
X—C

lim h(x) then lim g(x) = L.
X—C X—C

11



Definition: Left hand and Right hand limit-

) Let f(x) be a function defined on ACR and let ¢ be a cluster point of A. A
number [ € R is called a Right hand limit of function f(x) at x = c if for given
e>036>0s.t.x€EAlAc<x<c+é

= |f(x) — | <& We candenote thisas lim f(x) = L.
X—C

(ii) Let f(x) be a function defined on ACR and let ¢ be a cluster point of A. A
number [ € R is called a left hand limit of function f(x) at x = c if for given
e>036>0s.t.xeEldc—-06<x<c

= |f(x) — | < &. We can denote thisas lim f(x) = L.
X—C

Theorem 6: Let AC R,f:A = R be a function and ¢ € R be a cluster point of A. If
lim f(x) exists if and only if lim f(x) and lim f(x) exists and lim f(x) = lim_f(x).
X—C X—C xX—C X—C X—C

We have leI?_ f(x) = gcl_r)r} flx) = xll)r?+ f(x).

Remark:

1. Left hand and Right hand limit are called one sided limits of a function at a point.
2. It may possible that one of them may exist or both may exist and are different.
Infinite limits:

Let A € R, f: A — R be a function and ¢ € R be a cluster point of A. (i) We say that f —
wasx - cifforeverya ERIF>0s.t.x€EA0<|x—c|<d=f(x)>a.

We can write this as lim f(x) = oo.
x—c
(ii)We say that f - o as x — cifforeveryf € R3 6 > 0s.t.
XxXEAO<|x—c|<d=f(x) <B.

This can be written as lim f(x) = oo.
X—C

[llustrative Example:

Let f(x) = x2 — 2,c = 3 then lirr?l’(x2 -2)=17.
x—

For,x > 3i.e.x — 3%.
If x = 3.01 then f(x) = 7.0601,

x = 3.001 then f(x) = 7.006001,
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x = 3.0001 then f(x) = 7.00060001,

x = 3.00001 then f(x) = 7.0000600001. and
Forx <3 i.e.x > 3.
If x = 2.99 then f(x) = 6.9401,

x = 2.999 then f(x) = 6.994001,

x = 2.9999 then f(x) = 6.99940001,

x = 2.99999 then f(x) = 6.9999400001.
Here, in both the cases f(x) is very close to 7.

Hence, lim(x? — 2) = 7.
x—3

Example: 1. Find the right hand and left hand limit of a function

Flx) = {(%) X#3
0, x=3

. | _ i (=2
Solution: If x > 3 then xllgl+ f(x) = leT+ ( ~—3 )

- xllgl (z_:;) =1

, — Lim (=3
Ifx < 3then lim f(x) = lim ( x_g)

= lim (‘(’“‘3)) - 1.

x—3~ x—3

+ lim £(0) # lim £()
= lirré f(x) does not exist.
X—

1
2. Evaluate liml fx lif it exist.

X0 | ex41

1
Solution: We have ifx > 0 then% — 00 . ex — 00,

1
Ifx < 0,%—>—oo ~ex o 0.

1 1
. ex . 1 . ex
11111 —| = 111+n[ _1] =1l.and lim | = 0.
X207 ex+1] X207 Ligex X207 | ex+1



1
; ex .
= hml - l does not exist.
x>0 | px 41

) 3)|x+2
3. Evaluate lim &332
x—-=2 x+2

Solution: lim &3 +2l _ iy, &+3)G+2)
Cxo—2t  x4+2 xo—2t  x42
= lim (x+3)=1...(1)
x—--2%
Again lim Getdlxtal gy EH3)-0c+2)
xo-27  x+2 x—>-2"  X+2

= xLiznZ_(x +3)=-1...(2)

From (1) and (2) we see that given limit does not exists.

1
xex
1

ex+1

4. Find the limit of f(x) = ,x # 0.

%2

——qa 0<x<a
a

5. Find the limit of f(x) =< 0, xX=a
3
a— z—z, xX>a
6. Find the limit of f(x) = xl—xllxl,x * 0.
7. Find lim (2250) v = o,
x—0 \7x=5|x|

XZ
8. Prove that lim ( ) = 0 if it exists.

x—0 \3x+]|x|
9. Prove that lim (xsin (l)) = 0.
x—0 X
Solution: Since —1 < sinx < 1, for all real nos. x.
. (1 . (1
= —1 <sin (;) <1x#0. «~ |x|< xsm(;) < |x|, x # 0.

. (1)) _
By Squeeze theorem, }Cl_r)ré (xsm (;)) = 0.
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More Examples:

x3-1

1. Evaluate lim =;
x—1x“—1

X

-1 [(x—l)(x2+x+1) s xZ4x+1

3
= lim = [
x2-1 x—1 (x—=1)(x+1) x—-1Ll x+1

Solution: lim ] =3 (By quotient rule)
x—-1 2

2 lim 4—Vx+12

x—4 x—4

Solution:lim 4—/x+12 _ lim {4—\/x+12 % 4+\/x+12} _ lim{ 1 } _ 1
o4  x—4 x4l x-4 4+vxt+12)  x54 l a+vxr1z2) 8
. X%—x+sinx
3. Evaluate lim ————.
x—0 2x
. . X% —x+sinx ] x 1  sinx 11
Solution: lim ———— = hm[———+— =0+=-+=-.1=0.
x-0 2x x—0 L2 2 2x 2 2

Examples: Using Squeeze theorem show that
() lim sinx = 0 (ii) lim x? cos (l) =0.
x-0 x—0 X
Solution: (i) Let f(x) = sinx.
We know that |sinx| < |x],x = 0i.e.—x < sinx < x.
o lim(—x) = 0 and limx = 0.
x—0 x—0

= lim sinx = 0.
x—0

(ii) We know that —1 < cos G) <1,vVx=+0.

1
» —x? < x?cos (;) <x%2vx=>0.

~ lim(—x?) = 0 and lim(x?) = 0.
x-0 x-0
. 2 l _
= }Cl_rgx cos (x) =0.
Example: Find lirré f (%), if it exists for the following functions.
X—

i, x>0

(D) f: R > Rdefined by f(x) = {x
1, x<0



1
Solution: We have f(x) = {Z’ x>0
1, x<0

lim f(x) = lim 1= 1.
x—0~ x—-0~
. . 1 .
and xll)rglJr f(x) = xll)r(r)1+ (;) does not exists.
lirr(l) f(x) does not exists.
X—

x<0

(i) f: R - Rdefined by f(x) = {Z’
1, x=0

1

Solution: We have f(x) = {;' x <0
1, x=>0

. : : . (1 :
xll)rg+ flx) = xll)%l+ 1=1.and xll)r(l)l_ flx) = xll,%l— (;) does not exists.
g lin;l) f (x) does not exists.
X—

. 0, —-1<x<0
(i) f: [—1,1]—>]Rdefmedbyf(x)={1 0< x<1

—1<x<0

Solution: We have f(x) = {2’ 0<x<1

lim f(x) = lim 0 = 0.and

x—0~ x—-0~

Ji 100 = Jim 1 =1

~ lim f(x) and lim f(x) both exists.
x—0~ x—-07%

But they are not equal /same. Therefore, lir% f(x) does not exist.
X—

Evaluate (i) lim Y0 x> 0.

x—o00 VX+3
Vx=5 _ \/1“
Solution: ;1_{210 N ;1_)00 =

+

= lim

X—o0 (1+F> lim (1+
X X—00

16



Vx—x

(ii) Evaluate lim ,x > 0.
x—oo VX+Xx
=
. . Nx-x o (7—1)
Solution: lim = lim |-=
x—00 VxX+x X—00 (_x+1)
X
1 . 1
= im [E2 = Jim(=-1)  o-1
= 1m |3 == T =01 —1.
xX—00 ﬁ-'-l jgl_)rglo(\/—}+1)
. 5x2+43x+20
(iii) Evaluate lim %
x—o00 3x4—2x

3 20
. . 5x%+3x+20 . P
Solution: lim ———— = lim M
X—00 3x4—-2x X—00 (3—;)

_ Jim(5+3437)  svo+0 _s
© lim(s-3) o s0 o d

Continuity
Definition:

Let AC R, f:A—> R, c €A. we say that f is continuous at x = c if given
€>036 > 0such that

Vx€EA|x—c|<éd=|f(x)—f(0)] <e.
If function f is not continuous at x = c¢ then it is said to be discontinuous at that point.
Remark:

1. If ¢ € A is a cluster point of A then a function is continuous at x = c¢ if and only if

lim £(x) = f(c).

2.If c € A is not a cluster point of A then f is automatically continuous at c. Such points
are often called isolated points of A.

Generally, we test the function for continuity only at cluster points.
Definition : A function f is said to be continuous at a point x = ¢ of its domain if

() }Cl_r)rg f(x) exists. (ii) f(c) is defined. (iii) }Ci_rgf(x) = f(c).

Definition: Let A € Rand f: A = R. If B is a subset of A, we say that f is continuous on
the set B if f is continuous at every point of B.

17



Example: The constant functionf (x) = b is continuous on R.

For,ifc € R then lim f(x) = b = f(c). Thus, f is continuous at every point ¢ € R.
X—C

Discontinuous function: A function f which is not continuous is called discontinuous
function.

Examples:
1.Let f(x) = %,x # 0.

Here, note that the function is not defined at x = 0.
i. e. f(0) is not defined (condition (ii) is not satisfied).
Therefore, function is not continuous at x = 0.

|x|
2.f(x)={7’ x#0
0, x=0
Here, f(0) = 0. i. e. function is defined at x = 0.

Consider, lim f(x) = lim Z=_1and
x—0" x-0" X

. . X
Jip /) = Jig =1

L.H.L=#=RHL= lirré f(x) does not exist.
x>

Therefore, function is not continuous at x = 0. (Condition (i) is not satisfied).

sinx
3. Let f(x) = {T X #0
0, x=0

Here, £(0) = 0.1 e. f(0) is defined at x = 0. We know that lim (=) =12 £(0).
x—

Therefore, function is not continuous at x = 0. (Condition (iii) is not satisfied).

Types of Discontinuity:

There are two types of discontinuities (i) Removable discontinuity (ii) Irremovable OR
Essential discontinuity.

18



Definition: If lim f(x) exist but it is not equal to f(c) then we say that f(x) has
X—C

removable discontinuity at x = c.

If limf(x) does not exists then f(x) is said to have Essential/ Irremovable
X—C

discontinuity.

Examples:
sin2x

1. Test the continuity of f(x) = { PN 0
0, x=0

Solution: Consider, lim £(x) = lim 222% = |im (5in2x % 2)
x-0 x—-0

X x—-0 2x
. Sin2x .
=lim——Xxlim2=1.2 = 2.
x—0 2Xx x—0

But f(0) = 0.~ lir%f(x) * f(0).
X—
Therefore, f is discontinuous at x = 0.

This discontinuity is removable because by redefining the function we can make it as

continuous.
sin2x
e if f(x) = { x X7 0 then it is continuous at x = 0.
2, x=0
(x?-16)
2. Suppose f(x) =1 -4 ’ then function has removable discontinuity at x = 4.
4, x=4
Ll e -1
3. Suppose f(x) = {x+1 » X Then function has removable discontinuity at
2, x =-1
x=-1.
My 0
4.f(x) = {x ’ then this has essential discontinuity.
0, x=0
For, lim _ lim = = —1and lim M _ lim Z = 1.
x—=0" X x—0" X x—-0t X x—-0t X

Here, lim f(x) # lim f(x) - lim f(x) does not exist.
x—0~ x-0% x—0

5. Discuss the continuity of the function
x—|x]| x=|x|

(i)f(x)={7' 70 (ii>g<x>={T' r<t
0, X = 2, x=0
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x2

7—4-, 0<x<4

6. Discuss the continuity of f(x) =< 0, x =4
4 — x_ x>4

(
7. Check the continuity of f(x) = i o +e_)1_c> ’

e%+1 +0
8. Check the continuity of h(x) ={ £ ' ¥

Continuity at end points:

Definition: Let a function f be defined on a closed interval [a, b]. Then f is said to be
continuous at x = a if it is continuous from right at x = a. 1. e.if lim f(x) = f(a) and f
xX—a

is said to be continuous at x = b if it is continuous from left at x = b.
i.e.if lirlqu f(x) = f(b).
x—-b~
Continuity of a function on an interval:

Definition: Let a function f be defined on a closed interval [a, b]. Then f is said to be
continuous on the closed interval [a, b], if

() lim f(x) = f(c), Yc € (a,b)i.e. f is continuous at every point of the interval

X—C

(a, b).
(ii) lim f(x) = f(a) and

x—at
(L) lim f(x) = f(b)
X—

Algebra of continuous functions:
Theorem 7: Let A € R, let f and g are continuous functions at x = c then

(@) f £ g,kf,f.g are continuous at x = ¢, k- constant.

(b) g:A —» R is continuous at c € Aand if g(x) # 0, for all x € A then the quotient

function 5 is continuous at x = c.
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Proof: Since f and g are continuous at x = c.
= lim f(x) = f(c) and lim g(x) = g(c).
(a) Consider, lim(f £ g)(x) = lim(f(x) + g(x))
= lim f(x) + lim g(x) = f(c) + g(c)

= (1 90©.
Therefore, f + g is continuous at x = c.

Consider, lim(kf)(x) = lim(k. f (x)) = k lim f (x)

=k.f(c) = (kf)(c).

i.e. kf is continuous at x = c.
Consider, lim(f. g)(x) = lim f(x).g(x) = lim f(x).lim g(x)
X—=C X—=C X—=C x—=c

= f(0).9(c) = (fg) (o).
Therefore, f. g is continuous at x = c.

(b) Since c € A g(c) # 0.Butaslim g(x) = g(c).
X—C

_mse  f@ _ (f
We have llm( )( ) = im ot =0"= (§> ().

Therefore, 5 is continuous at x = c.

Theorem 8: If f is continuous function at x = ¢ then |f] is also continuous at x = c.

Proof: We shall use the ¢ — § definition of continuity to prove this theorem. Suppose f is
continuous function at x = c. then by the definition, for givene > 036 > 0 s.t.

|f(x) — f(c)| < e whenever |x — c| < 6.
Consider, ||f ()| = If (©)I| < If(x) = f(c)| < &, whenever |x — c| < 6.
Therefore, by the definition, |f(x)| is continuous at x = c.

Remark: The converse of this theorem is not true.

1, x<c

For, Let f(x) = {I x> c
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Then lim|f(x)| = lim(1) = 1 = f(c). Therefore, |f(x)| is continuous at x = c.
X—C X—C
But lim f(x) does not exist.
X—C
Because lim f(x) = —1and lim f(x) = 1.
x—c~ x-ct
Therefore, f is not continuous at x = c.

Theorem 9: If f is continuous at x = c and f(c) = 0 then \/7 is continuous at x = c.

Proof: As f is continuous at x = c,
lim £(x) = £(©).im(VFG) = [lim £ (x) = /F ().

Therefore, \/7 is continuous at x = c.
Composition of Continuous functions:

Theorem 10: Let AC R, f: A —» Rand g: B — R be functions such that f(4) € B. If f is
continuous at a point ¢ € A and g is continuous at b = f(c) € B then the composite
function g o f: A - R is continuous at c.

Proof: Since f is continuous at ¢ € A.
Sfore>036>0s.t.x—c|<d= |f(xX)—f(O)] <P cuvernn (D
Also, g is continuous at b = f(c) € B.
“fore>0,3p>0s.t.|f(x)—f(0)] <p
= |g(f0)) = g(F ()| < £ (2)
From Eqn. (1) and (2), we have for givene > 0,35 > 0 s.t.

when |x —c| <8 = |g(f(x)) —g(f(0)| <€
= lx—c| <= [(ge Hx) = (gl <e.
This shows that the composite function g o f is continuous at x = c.
Examples:

1. Find a and B, if the function f(x) is continuous on (-3, 5);

x+a —-3<x<I1
where f(x) =4{3x+2, 1<x<3
B+ x, 3<x<5
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Solution: We shall test the continuity of f(x) at x = 1 and 3.

(@) Atx =1:

f(1) =5whenx =1f(x) =3x+ 2.

xlg{l+ fx) = xli_)r{1+(3x +2)=3(1)+2=5.

ler{l_ flx) = xli_)r{l_(x +a)=1+a.

But it is given that f(x) is continuous at x = 1.

~RHL=LHL:-5=1+a = a=4

(b) Atx = 3:

f3A)=p+3,whenx=3f(x)=p8+3.

lim f() = lim (B+x) = +3.

xlgg_ f(x) = xligl_(Bx +2)=303)+2=11.

But it is given that f(x) is continuous at x = 3.

~“RHL=LHL:-B+3=11> B =8.
x+a —2<x<0

2. Find a, g if the function is continuous on (-2, 2); where f(x) ={2x+1, 0<x<1
b —x, 1<x<?2

3. Discuss the continuity of f(x) atx = 1, 2, 4; where

2x — 1, x<1

x?, 1<x<2
f)=43x—4 2<x<4

3

X2, x =4

Solution: At the point x = 1:
. _ . 2 _
S0 = Jip ) = Tand
lim f(x) = limQ2x—-1)=2(1)—-1=1.
x—->1" x—>1"
Alsowewhenx =1,f(x)=2x—-1 ~ f(1)=2(1)—-1=1.
s~ we have lim f(x) = lim f(x) = f(1).
x—-1* x—-1~
~ f(x)is continuous at x = 1.

At pointx = 2:
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xllg”n+ flx) = ,}L%LB’“ —-4)=3(2)—-4=2.
lim f(x) = lim (x?) = 22 = 4.
X2 X2
» lim f(x) # lim f(x)
lin% f(x) does not exist.
X—

~ f(x) is not continuous at x = 2.

At the point x = 3:

: P 3 R
Jlim fG) = Jlim () = (12) = @) =8

lim f(x) = lim 3x —4) =3(4) —4=38.

xX—4~ xX—4~

3 3
Alsowhenx =4, f(x) = (xZ) ~ f(4) =42 =8.
~we have lim f(x) = lim f(x) = f(4).
x—4% X—4~

~ f(x) is continuous at x = 4.

x?, 0<x<1
4. The function f is defined on [0, 3] by f(x) = 61 tx, 1=x=<2 piscuss the
;, 2<x<3
continuity of f(x) on [0, 3].
x%+2, 0<x<1
5. Discuss the continuity of function f(x) =<4x —1, 1<x<?2
x? —1, 2<x<3
6. Test the function for continuity on [-2, 2]; where
2 —3x, —2<x<1
f(x) =42x+7, -1<x<1
4x + 1, 1<x<2

Solution: We need to check the continuity of f(x) at

x=-1,1and lim f(x), lim f(x).
x—2~ x—>—2%

At the pointx = —1:

xl_gri+ flx) = xl_}g}+(2x +7)=2(-1)+7=05.

xl_}t_ri_ flx) = xl_ir_ri_(z —3x)=2-3(—1) =5.
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Alsowhenx =—-1,f(x) =2—-3x ~ f(-1) =2-3(-1) =5.
+ lim_ f() = lim_f(x) = f(-1).
x—-—1* x—-—1"
~ f(x) is continuous at x = —1.
At the pointx = 1:
xll)r{l+ f(x) = xll)r%(élx +1)=4(1)+1=5.
lim f(x) = lim2x+7)=2(1)+7=09.
x-1" x-1"
s lim f(x) # lim fCx).
lin} f(x) does not exist.
x—
~ f(x) is not continuous at x = 1.
Consider,
xEI_‘anr flx) = xngl2+(2 —3x)=2-3(-2)=8.
Whenx = =2,f(x) =2—-3x ~ f(=2) =2-3(-2)=8.
lin%+ f(x) = f(=2). ~ f(x) is continuous from right at x = —2.
X—>—

Again consider,

lim f(x) = lim (4x+1) =4(2)+1=0.

X—27 xX—-2~
Whenx =2,f(x) =4x+ 1.~ f2)=4(2)+1=09. ~ lirgl_f(x) = f(2).

X—

~ f(x) is continuous from left at x = 2.

Thus, the given function is continuous everywhere on [-2, 2] exceptat x = 1.

7.Find a, b so that the given function will be continuous for every x.

ax + 3, x>5
(i)f(x)={8’ x=5
x>+bx+1 x<5
V3, x =
(i) f(x) =1 2sin(cos™'x), 0O0<x<1
ax + b, x<0
Vx-a
(iii) g (x) = {x—l o x>1
b, x<1
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(iv) If f(x) is continuous at x = 0 and f(1) = 2, find a and b; where

x*+a, x>0

f(x)z{zvx2+2+b, x<0

x> +a, x>0

Solution: We have f(x :{
f&) 2Vx2+2+b, x<0

and f(1) = 2.

~(H+a=2>a=1

Now, f(x) is continuous at x = 0.

Jip £G) = Jim £G) = (0).» lim O + )= lim (25 +2+ 1)
>a=2V2+b=>b=1-2V2.

x%4+x—-6

8. Let f be defined forall x € R, x # 2,by f(x) =

x-2
Can f be defined so that function is continuous at that point?
Solution: We have, a function is defined at point x = 2.

2 45— -
NOW,f(X) _ XTHx—6 _ (x—=2)(x+3) = (x + 3).

x—2 x—2

Therefore, if we define f(2) = 5 then lin% f(x) = lin%(x +3) =5=f(2).
X— X
So that the function is continuous at x = 2.

9. Examine the continuity of f(x) = z—;; .

Solution: Let @(x) = % and ¢(y) = \[y then f(x) = ¢(®(x)). By Composite function

theorem, if @(x) is continuous at x and ¢(y) is continuous at @(x) then @y0 is
continuous at x.

Consider @(x) = z—: . We observe that for all values of x except x = —3 it is continuous.

Further, ¢ (y) is continuous V y = @(x) > 0. i. e.i—;; > 0. Which is possible only when

(D) (x—1)=20and (x+3)=0ieifx=>1andx>-3 ~x>1 and
(i) G—-—1)<0and(x+3)<0ieifx<landx<-3 ~x<-3.

Hence, f(x) is continuous on (—o0, —3) and [1, ).
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Definition: A function f: A - R is said to be bounded on A if there exists a constant M >
0 such that |f(x)| < M for all x € A.

Theorem 11: (Boundedness Theorem)-

LetI = [a, b] be a closed and bounded interval and f:1 — R be continuous function on I.
Then f is bounded on L.

Definition: Let A € R and let f: A — R be a function defined on A. We say that f has an
absolute maximum on A if there exist a point x; € A such that f(x;) = f(x),V x € A.
And we say that f has an absolute minima on A if there exist a point x; € A such that

f(x) < f(x),Vx € A.
Theorem 12: (Maximum - Minimum Theorem)-

Let I = [a, b] be a closed bounded interval and let f: I = R be a continuous function on
I. Then f has an absolute maximum and an absolute minimum on 1.

Theorem 13: (Location of Roots theorem)-

Let I = [a, b] be a closed bounded interval and let f: I = R be a continuous function on
LIff(a) <0< f(b) OR f(a)> 0> f(b) then there exists a number c €

(a,b)s.t.f(c) =0.
Theorem 14: (Bolzano's Intermediate Value Theorem)-

Let I = [a, b] be a closed bounded interval and let f:I = R be a continuous function on
I.Ifa,b € I and k € Rsuch that f(a) < k < f(b) then there exists a point ¢ € I between
a and b such that f(c) = k.

Proof: Suppose thata < b and let g(x) = f(x) — k then g(a) < 0 < g(b). By the
location of roots theorem, there exists a point ¢ € I with a < ¢ < b such that

g©)=f(c)—k=0. = f(c)=k.

Now, suppose that b < a and let h(x) = k — f(x) then h(b) < 0 < h(a). By the location
of roots theorem, there exists a pointc € I with b < ¢ < a such that

h(c)=k—f()=0. = f(c) =k.

Theorem 15: Let I = [a, b] be a closed bounded interval and let f: I — R be a continuous
function on L. If k € R any number satisfying Inf f(I) < k < Sup f(I) then there exists
a point ¢ € I between a and b such that f(c) = k.

Proof: By Maximum-Minimum theorem, there are points c;and c, in I such that
Inf f(I) = f(cy) <k < f(c1) = Sup f(I). Hence, there exists a point ¢ € [ s.t.

f(c) =k.
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Example:

1. Give an example of functions f and g that are both discontinuous at a point c € R s. t.

(a) The sum f + g is continuous at c.
(b) The product f. g is continuous at c.
Solution: Let us define the functions f(x)and g(x) as-

1, x=0 0, x=0

f(x) = {0 =0 nd gx) = {1 « = 0 [henboth the functions are discontinuous at

x=0.

(@) We have (f + g)(x) = f(x) + g(x) = 1,V x € R, which is a constant function and

hence it is continuous for all x € R.

(b) We have(f.g)(x) = f(x).g(x) =0,V x € R, which is a constant function and hence

it is continuous for all x € R.

2. Let I = [a,b] and let f:I — R be a continuous function such that f(x) > 0 for each x

in L. Prove that there exists a number a > 0s.t. f(x) > «, for all x € I.

Solution: Since f is continuous on closed and bounded interval I = [a, b]. By Max. - Min.

theorem, there exists x; € I s.t.f(x;) < f(x),Vx € L.
Now, f(x) >0,Vx €l = f(x;) > 0.Ifweset f(x;) = athen f(x) > a.
Exercise

1. By using the definition of limit of a function prove the following.

N o [(x*=3x+2
(i) lim(2x+4) =9 (ii) lim| —————
x—1 x-2 xX—2

5x+7
] . 3 — . . —
(iii) }CILI}(X )=1 (iv) ;lcli% (3x+ 1) =7

x+1, 0<x<1
2. Show that lim f(x) does not exist. Where f(x) = { 2, x=1
ot 2—-x, 1<x<2

[x|

3. Iff(x) = — . x#0, show that lirré f(x) does not exist.
X
0 0<x<3
4. Discuss the continuity of f(x) = { %3’ - =X
4x —6,3<x<6
( X, 0<x< %
5. Test the continuity of f(x) = ! 1, X = %

Ll—x, %<x<1
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tan~?! (l) , x#0
6. Examine for the continuity (i) f(x) = *
, x=0

R

1+x, -1<x<0
(i) f(x) = 1, x=0

1-x, 0<x<1
7. Draw the graphs of the following functions;

(@) f(x) = 2% —x (iD) f(x) =3x2 —x (iii) g(x) =3x% —7

() 6 = VE=x7 () f(x) =5 (D) h(x) =2

(wii) F(x) = x — |x| (iii) f(x) =4x? (ix) f(x) =4x*>+2

(x)G(x) =|x—2| (xi)h(x)=|x|+2 (xii) Consider the function f:[—-3,3] = R

(0, —3<x< -2
1, —2<x<-1
defined by f(x) =1 2, —1 < x <1 Draw the graph of f(x).
| 3, 1<x<?2
k—Z, 2<x<3

) 1
Answers: 2. Continuous at = >

. . 1
3. Discontinuous at x = 3

4. (i) Discontinuous at x = 0. (ii) Continuous atx = 0.
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