
 Prof:P.Y.Hole

Chap2:Classes,Objects and Methods

Java Classes

 A class in Java is a set of objects which shares common

characteristics/ behavior and common properties/

attributes.

 It is a user-defined blueprint or prototype from which

objects are created.

 For example, Student is a class while a particular

student named Ravi is an object.

Properties of Java Classes

1. Class is not a real-world entity. It is just a template or

blueprint or prototype from which objects are created.

2. Class does not occupy memory.

3. Class is a group of variables of different data types and a

group of methods.

4. A Class in Java can contain:

 Data member

 Method

 Constructor

 Nested Class

 Interface

Class Declaration in Java

access_modifier class <class_name>

{

 data member;

 method;

 constructor;

 nested class;

 interface;

 Prof:P.Y.Hole

}

Example of Java Class

 class Student {

 // data member (also instance variable)

 int id=1;

 // data member (also instance variable)

 String name=”Priya”;

 public static void main(String args[])

 {

 // creating an object of

 // Student

 Student s1 = new Student();

 System.out.println(s1.id);

 System.out.println(s1.name);

 }

}

Java Objects

 An object in Java is a basic unit of Object-Oriented

Programming and represents real-life entities.

 Objects are the instances of a class that are created to

use the attributes and methods of a class.

 A typical Java program creates many objects, which as

you know, interact by invoking methods. An object

consists of :

1. State: It is represented by attributes of an object. It also

reflects the properties of an object.

2. Behavior: It is represented by the methods of an object. It

also reflects the response of an object with other objects.

 Prof:P.Y.Hole

3. Identity: It gives a unique name to an object and enables

one object to interact with other objects.

 The new keyword is used to allocate memory at runtime.

All objects get memory in Heap memory area.

1. class Rectangle{

2. int length;

3. int width;

4. void insert(int l, int w){

5. length=l;

6. width=w;

7. }

8. void calculateArea(){System.out.println(length*width);}

9. }

10. class TestRectangle1{

11. public static void main(String args[]){

12. Rectangle r1=new Rectangle();

13. Rectangle r2=new Rectangle();

14. r1.insert(11,5);

15. r2.insert(3,15);

16. r1.calculateArea();

17. r2.calculateArea();

18. }

19.

20. }

O/p

55

45

 Prof:P.Y.Hole

Object referencing

 Object referencing in java is basically a address in

memory where all methods and variables associated with

object resides. When you create an object like this…

 Example a = new Example();

 here a is actually a reference which is pointing to

memory assigned using new keyword.

 So if you do some operation with a for eg.

 a.x=5.(consider x is some variable).

 Now x associated with a has value 5.

 And if you declare another object..

 Example b= new Example();

 And simply do…b=a;

 Now b pointing to same memory address as a

 . So b.x will give you 5.This is called object refrencing.

What are Constructors in Java?

 In Java, Constructor is a block of codes similar to the

method.

 It is called when an instance of the class is created.

 At the time of calling the constructor, memory for the

object is allocated in the memory.

 It is a special type of method that is used to initialize the

object.

 Prof:P.Y.Hole

 Every time an object is created using the new()

keyword, at least one constructor is called.

Syntax

Following is the syntax of a constructor −

class ClassName {

 ClassName() {

 }

}

Java allows two types of constructors namely −

 Default Constructor in Java

 Parameterized Constructors

1) Default Constructor in Java

 A constructor that has no parameters is known as default

the constructor.

 A default constructor is invisible.

 And if we write a constructor with no arguments, the

compiler does not create a default constructor.

 It is taken out.

 It is being overloaded and called a parameterized

constructor.

 The default constructor changed into the parameterized

constructor. But Parameterized constructor can’t change

the default constructor. Example

Public class MyClass {

 Int num;

 MyClass() {

 num = 100;

 }

 Prof:P.Y.Hole

}

You would call constructor to initialize objects as follows

public class ConsDemo {

 public static void main(String args[]) {

 MyClass t1 = new MyClass();

 MyClass t2 = new MyClass();

 System.out.println(t1.num + " " + t2.num);

 }

}

This would produce the following result

100 100

Parameterized Constructors

 A constructor that has parameters is known as

parameterized constructor.

 If we want to initialize fields of the class with our own

values, then use a parameterized constructor.

Example

Here is a simple example that uses a constructor −

// A simple constructor.

class MyClass {

 int x;

 // Following is the constructor

 MyClass(int i) {

 x = i;

 }

}

You would call constructor to initialize objects as follows −

 Prof:P.Y.Hole

public class ConsDemo {

 public static void main(String args[]) {

 MyClass t1 = new MyClass(10);

 MyClass t2 = new MyClass(20);

 System.out.println(t1.x + " " + t2.x);

 }

}

This would produce the following result −

10 20

Constructor Overloading in Java

 In Java, overloaded constructor is called based on the

parameters specified when a new is executed.

 Sometimes there is a need of initializing an object in different

ways. This can be done using constructor overloading.

Important points to be taken care of while doing Constructor

Overloading

 Constructor calling must be the first statement of the constructor

in Java.

 If we have defined any parameterized constructor, then the

compiler will not create a default constructor. and vice versa if we

don’t define any constructor, the compiler creates the default

constructor(also known as no-arg constructor) by default during

compilation

 Recursive constructor calling is invalid in Java.

 class Box {

 double width, height, depth;

 // constructor used when all dimensions specified

https://www.geeksforgeeks.org/new-operator-vs-newinstance-method-java/

 Prof:P.Y.Hole

 Box(double w, double h, double d)

 {

 width = w;

 height = h;

 depth = d;

 }

 // constructor used when no dimensions specified

 Box() { width = height = depth = 0; }

 // constructor used when cube is created

 Box(double len) { width = height = depth = len; }

 // compute and return volume

 double volume() { return width * height * depth; }

}

 // Driver code

public class Test {

 public static void main(String args[])

 {

 // create boxes using the various constructors

 Box mybox1 = new Box(10, 20, 15);

 Box mybox2 = new Box();

 Box mycube = new Box(7);

 double vol;

 // get volume of first box

 vol = mybox1.volume();

 System.out.println("Volume of mybox1 is " + vol);

 Prof:P.Y.Hole

 // get volume of second box

 vol = mybox2.volume();

 System.out.println("Volume of mybox2 is " + vol);

 // get volume of cube

 vol = mycube.volume();

 System.out.println("Volume of mycube is " + vol);

 }

}

Op:Volume of mybox1 is 3000.0

Volume of mybox2 is 0.0

Volume of mycube is 343.0

Method Overloading:

 In Java, Method Overloading allows different methods to have

the same name, but different signatures where the signature can

differ by the number of input parameters or type of input

parameters, or a mixture of both.

 Method overloading in Java is also known as Compile-time

Polymorphism, Static Polymorphism, or Early binding.

 In Method overloading compared to the parent argument, the

child argument will get the highest priority.

// Java program to demonstrate working of method

// overloading in Java

public class Sum {

 public int sum(int x, int y) { return (x + y); }

 public int sum(int x, int y, int z)

https://www.geeksforgeeks.org/compile-time-polymorphism-in-java
https://www.geeksforgeeks.org/compile-time-polymorphism-in-java
https://www.geeksforgeeks.org/difference-between-early-and-late-binding-in-java

 Prof:P.Y.Hole

 {

 return (x + y + z);

 }

 public double sum(double x, double y){return (x + y);}

 public static void main(String args[])

 {

 Sum s = new Sum();

 System.out.println(s.sum(10, 20));

 System.out.println(s.sum(10, 20, 30));

 System.out.println(s.sum(10.5, 20.5));

 }

}

Op

30

60

31.0

Different Ways of Method Overloading in Java

 Changing the Number of Parameters.

 Changing Data Types of the Arguments.

 Changing the Order of the Parameters of Methods

1. Changing the Number of Parameters

Method overloading can be achieved by changing the number of parameters while

passing to different methods.

 // Importing required classes

 Prof:P.Y.Hole

 import java.io.*;

 class Product {

 public int multiply(int a, int b)

 { int prod = a * b;

 return prod;

 }

 public int multiply(int a, int b, int c)

 {

 int prod = a * b * c;

 return prod;

 }

 }

 class GFG {

 public static void main(String[] args)

 {

 Product ob = new Product();

 int prod1 = ob.multiply(1, 2);

 System.out.println("Product of the two integer value :" + prod1);

 int prod2 = ob.multiply(1, 2, 3);

 System.out.println("Product of the three integer value :" + prod2);

 }

 }

O/P
 Product of the two integer value :2

 Product of the three integer value :6

2. Changing Data Types of the Arguments

In many cases, methods can be considered Overloaded if they have the same name

but have different parameter types, methods are considered to be overloaded.

Below is the implementation of the above method:

Output

import java.io.*;

class Product {

 // Multiplying three integer values

 public int Prod(int a, int b, int c)

 {

 Prof:P.Y.Hole

 int prod1 = a * b * c;

 return prod1;

 }

 // Multiplying three double values.

 public double Prod(double a, double b, double c)

 {

 double prod2 = a * b * c;

 return prod2;

 }

}

class GFG {

 public static void main(String[] args)

 {

 Product obj = new Product();

 int prod1 = obj.Prod(1, 2, 3);

 System.out.println("Product of the three integer value :" + prod1);

 double prod2 = obj.Prod(1.0, 2.0, 3.0);

 System.out.println("Product of the three double value :" + prod2);

 }

}

op

Product of the three integer value :6

Product of the three double value :6.0

 Prof:P.Y.Hole

3. Changing the Order of the Parameters of Methods

Method overloading can also be implemented by rearranging

the parameters of two or more overloaded methods.

For example, if the parameters of method 1 are (String name,

int roll_no) and the other method is (int roll_no, String name)

but both have the same name, then these 2 methods are

considered to be overloaded with different sequences of

parameters.

Below is the implementation of the above method

Output

// Importing required classes

import java.io.*;

class Student {

 // Method 1

 public void StudentId(String name, int roll_no)

 {

 System.out.println("Name :" + name + " " + "Roll-No :" + roll_no);

 }

 // Method 2

 public void StudentId(int roll_no, String name)

 {

 // Again printing name and id of person

 System.out.println("Roll-No :" + roll_no + " "+ "Name :" + name);

 }

}

class GFG {

 // Main function

 Prof:P.Y.Hole

 public static void main(String[] args)

 {

 // Creating object of above class

 Student obj = new Student();

 // Passing name and id

 // Note: Reversing order

 obj.StudentId("riya", 1);

 obj.StudentId(2, "Kamlesh");

 }

}

op

Name : riya Roll-No :1

Roll-No :2 Name :Kamlesh

What if the exact prototype does not match with arguments?

 Priority-wise, the compiler takes these steps:

 Type Conversion but to a higher type(in terms of range) in the same family.

 Type conversion to the next higher family(suppose if there is no long data

type available for an int data type, then it will search for the float data

type).

Let’s take an example to clarify the concept:

https://www.geeksforgeeks.org/type-conversion-java-examples/

 Prof:P.Y.Hole

// Demo Class

class Demo {

 public void show(int x)

 {

 System.out.println("In int" + x);

 }

 public void show(String s)

 {

 System.out.println("In String" + s);

 }

 public void show(byte b)

 {

 System.out.println("In byte" + b);

 }

}

class UseDemo {

 public static void main(String[] args)

 {

 byte a = 25;

 Demo obj = new Demo();

 obj.show(a);

 obj.show("hello");

 obj.show(250);

 Prof:P.Y.Hole

// since float datatype is not available and so it's higher datatype, so at this step their

will be an error.

 obj.show(7.5);

 }

}

Output
1 error

finalize() Method in Java

 finalize() method in Java is a method of the Object class that is used to

perform cleanup activity before destroying any object.

 It is called by Garbage collector before destroying the objects from

memory.

 finalize() method is called by default for every object before its deletion.

 This method helps Garbage Collector to close all the resources used by the

object and helps JVM in-memory optimization.

 Ex

public class Example

{

 public static void main(String[] args)

 {

 Example ex = new Example(); // Creating object ex of class Example

 ex = null; // Unrefrencing the object ex.

 System.gc(); // Calling garbage collector to destroy ex

 System.out.println("Unreferenced object ex is destroyed successfully!");

 }

 @Override

 protected void finalize()

 {

 System.out.println("Inside finalize method");

 Prof:P.Y.Hole

 System.out.println("Release and close connections.");

 } }

Op:

Unreferenced object ex is destroyed successfully!

Inside finalize method.

Release and close connections

Recursion in Java
 In Java, Recursion is a process in which a function calls itself directly or

indirectly is called recursion and the corresponding function is called a

recursive function.

 Using a recursive algorithm, certain problems can be solved quite easily.

Example:

// Java Program to implement

// Factorial using recursion

class GFG {

 // recursive method

 int fact(int n)

 {

 int result;

 if (n == 1)

 return 1;

 result = fact(n - 1) * n;

 return result;

 }

}

// Driver Class

class Recursion {

 // Main function

 public static void main(String[] args)

 {

 Prof:P.Y.Hole

 GFG f = new GFG();

 System.out.println("Factorial of 3 is " + f.fact(3));

 System.out.println("Factorial of 4 is "+ f.fact(4));

 System.out.println("Factorial of 5 is "+ f.fact(5));

 }

}

Op:

Factorial of 3 is 6

Factorial of 4 is 24

Factorial of 5 is 120

Java Object as Parameter

 Objects, like primitive types, can be passed as parameters to methods in

Java.

 When passing an object as a parameter to a method, a reference to the

object is passed rather than a copy of the object itself.

 This means that any modifications made to the object within the method

will have an impact on the original object.

 Example:

 class Add {

 int a;

 int b;

 Add(int x, int y) // parametrized constructor

 {

 a = x;

 b = y;

 }

 void sum(Add A1) // object 'A1' passed as parameter in function 'sum'

 {

 int sum1 = A1.a + A1.b;

 System.out.println("Sum of a and b :" + sum1);

 Prof:P.Y.Hole

 }

 }

 public class Main {

 public static void main(String arg[]) {

 Add A = new Add(5, 8);

 /* Calls the parametrized constructor

 with set of parameters*/

 A.sum(A);

 }

 }

Output:

Sum of a and b :13

Returning Objects
In java, a method can return any type of data, including objects.
Example

 Prof:P.Y.Hole

import java.util.Scanner;

class TwoNum {

 private int a, b;

 Scanner kb = new Scanner(System.in);

 void getValues()

 {

 System.out.print("Enter a: ");

 a = kb.nextInt();

 System.out.print("Enter b: ");

 b = kb.nextInt();

 }

 void putValues() {

 System.out.println(a + " " + b);

 }

 TwoNum add(TwoNum B) /*class type function add() takeobject 'B' as
parameter*/ {

 TwoNum D = new TwoNum(); //object D act as instance variable

 D.a = a + B.a;

 D.b = b + B.b;

 return (D); //returning object D

 }

}

public class Main {

 public static void main(String arg[]) {

 TwoNum A = new TwoNum();

 A.getValues();

 A.putValues();

 TwoNum B = new TwoNum();

 B.getValues();

 B.putValues();

 Prof:P.Y.Hole

 TwoNum C;

 /*object A calls add() passing object B

 as parameter and result are return at C*/

 C = A.add(B);

 C.putValues();

 }

}

New Operator in Java:

The new operator in java is used to create new objects of a class. A request will be sent to the Heap

Memory for object creation. If enough memory is available, the operator new initializes the memory and

returns the address of the newly allocated and initialized memory to a the object variable.

Syntax

1. NewExample obj=new NewExample();

2. public class NewExample1 {

3.

4. void display()

5. {

6. System.out.println("Invoking Method");

7. }

8.

9. public static void main(String[] args) {

10. NewExample1 obj=new NewExample1();

11. obj.display();

12. }

13.

14. }

this keyword in Java

There can be a lot of usage of Java this keyword. In Java, this is a reference

variable that refers to the current object.

 Prof:P.Y.Hole

Usage of Java this keyword

Here is given the 6 usage of java this keyword.

1. this can be used to refer current class instance variable.

2. this can be used to invoke current class method (implicitly)

3. this() can be used to invoke current class constructor.

4. this can be passed as an argument in the method call.

5. this can be passed as argument in the constructor call.

6. this can be used to return the current class instance from the method.

Java static keyword

 The static keyword in Java is used for memory management mainly.

 We can apply static keyword with variables, methods, blocks and nested

classes.

 The static keyword belongs to the class than an instance of the class.

The static can be:

1. Variable (also known as a class variable)

2. Method (also known as a class method)

3. Block

4. Nested class

1) Java static variable

https://www.javatpoint.com/this1
https://www.javatpoint.com/this2
https://www.javatpoint.com/this3
https://www.javatpoint.com/this4
https://www.javatpoint.com/this5
https://www.javatpoint.com/this6
https://www.javatpoint.com/java-tutorial
https://www.javatpoint.com/java-variables
https://www.javatpoint.com/java-inner-class
https://www.javatpoint.com/java-inner-class

 Prof:P.Y.Hole

If you declare any variable as static, it is known as a static variable. Java

Program for Beginners

o The static variable can be used to refer to the common property of all

objects (which is not unique for each object), for example, the company

name of employees, college name of students, etc.

o The static variable gets memory only once in the class area at the time of

class loading.

Advantages of static variable

It makes your program memory efficient (i.e., it saves memory).

1. /Java Program to demonstrate the use of static variable

2. class Student{

3. int rollno;//instance variable

4. String name;

5. static String college ="ITS";//static variable

6. //constructor

7. Student(int r, String n){

8. rollno = r;

9. name = n;

10. }

11. //method to display the values

12. void display (){System.out.println(rollno+" "+name+" "+college);}

13. }

14. //Test class to show the values of objects

15. public class TestStaticVariable1{

16. public static void main(String args[]){

17. Student s1 = new Student(111,"Karan");

18. Student s2 = new Student(222,"Aryan");

19. //we can change the college of all objects by the single line of code

20. //Student.college="BBDIT";

21. s1.display();

22. s2.display();

23. }

24. }

Output:

 Prof:P.Y.Hole

111 Karan ITS

222 Aryan ITS

2) Java static method

If you apply static keyword with any method, it is known as static method.

o A static method belongs to the class rather than the object of a class.

o A static method can be invoked without the need for creating an instance

of a class.

o A static method can access static data member and can change the value

of it.

o

o class Calculate{

o static int cube(int x){

o return x*x*x;

o }

o

o public static void main(String args[]){

o int result=Calculate.cube(5);

o System.out.println(result);

o }

o }

Restrictions for the static method

There are two main restrictions for the static method. They are:

1. The static method can not use non static data member or call non-static

method directly.

2. this and super cannot be used in static context.

Java static block

o Is used to initialize the static data member.

o It is executed before the main method at the time of classloading.

Example of static block

 Prof:P.Y.Hole

1. class A2{

2. static{System.out.println("static block is invoked");}

3. public static void main(String args[]){

4. System.out.println("Hello main");

5. }

6. }

Output:static block is invoked

 Hello main

Java Nested and Inner Class

In Java, a class can be defined within another class and such classes

are known as nested classes. These classes help you to logically

group classes that are only used in one place. This increases the use

of encapsulation and creates a more readable and maintainable

code.

Nested Class in Java

The class written within a class is called the nested class while the

class that holds the inner class is called the outer class. Below are

some points to remember for nested classes in Java -

 The scope of a nested class is bounded by its enclosing class.

 A nested class has access to the members of the class in which it

is nested. But, the enclosing class cannot access the members of

the nested class.

 A nested class is its enclosing class member.

 Prof:P.Y.Hole

 A nested class can be declared public, private, protected, or

package-private.

Types of nested classes

Inner/Non-static nested class: In Java, non-static classes are a

security mechanism. A class cannot be associated with the access

modifier private, but if you have the class as a member of other

class, then the non-static class can be made private.

Types of inner classes −

 Inner Class

 Anonymous Inner Class

Inner Class

To create an inner class you just need to write a class within a class.

An inner class can be private which cannot be accessed from an

object outside the class. Below is a program to create an inner class.

In this example, the inner class is made private and is accessed class

through a method.

lass TestMemberOuter1{

 private int data=30;

 class Inner{

 void msg(){System.out.println("data is "+data);}

 }

 Prof:P.Y.Hole

 void display(){

 Inner in=new Inner();

 in.msg();

 }

 public static void main(String args[]){

 TestMemberOuter1 obj=new TestMemberOuter1();

 obj.display();

 }

}

Anonymous Inner Class

Anonymous inner class is an inner class declared without a class

name. In an anonymous inner class, we declare and instantiate it at

the same time. They are generally used when you need to override

the method of a class or an interface. The below program shows how

to use an anonymous inner class -

 Prof:P.Y.Hole

interface Eatable{

 void eat();

}class TestAnnonymousInner1{

 public static void main(String args[]){

 Eatable e=new Eatable(){

 public void eat(){System.out.println("nice fruits");}

 };

 e.eat();

 }

}

Static nested class:

A static class is a nested class that is a static member of the outer

class. Unlike inner class, the static nested class cannot access

member variables of the outer class because the static nested class

doesn’t require an instance of the outer class. Hence, there is no

reference to the outer class with OuterClass.this. The syntax of a

static nested class is –

1. class TestOuter1{

2. static int data=30;

3. static class Inner{

 Prof:P.Y.Hole

4. void msg(){System.out.println("data is "+data);}

5. }

6. public static void main(String args[]){

7. TestOuter1.Inner obj=new TestOuter1.Inner();

8. obj.msg();

9. }

10. }

Output:

data is 30

