K. T. S. P. Mandal's Hutatma Rajguru Mahavidyalaya, Rajgurungar Tal- Khed, Dist- Pune

Department of Mathematics

Limit Sub: Multivariable Calculus I Class: S. Y. B. Sc. **Prepared By** Ms. Wayal R. M.

Limit of a function of two variables:

A function f(x,y) has a limit L as (x,y) approaches (x_0,y_0) , if for every $\varepsilon>0$, there exists a number $\delta>0$ such that

$$|f(x,y) - L| < \varepsilon$$
 whenever $0 < \sqrt{(x - x_0)^2 + (y - y_0)^2} < \delta$
Or $0 < |x - x_0| < \delta$ and $0 < |y - y_0| < \delta$

We can write it as

$$\lim_{(x,y)\to(x_0,y_0)} f(x,y) = L$$

This limit is called as simultaneous limit.

Repeated limit or Iterated limit:

If f(x,y) is defined in a certain deleted-neighbourhood of (x_0,y_0) and if $\lim_{x\to x_0} f(x,y)$ exists, then it is a function of y say $\phi(y)$ also if $\lim_{y\to y_0} \phi(y)$ exists and equal to L_1 . Then L_1 is called as repeated limit is written as

$$\lim_{y \to y_0} \left\{ \lim_{x \to x_0} f(x, y) \right\} = \lim_{y \to y_0} \phi(y) = L_1$$

Or

$$\lim_{y \to y_0} \lim_{x \to x_0} f(x, y) = L_1$$

Similarly other repeated limit can be written as

$$\lim_{x \to x_0} \left\{ \lim_{y \to y_0} f(x, y) \right\} = \lim_{x \to x_0} \psi(y) = L_2$$

Or

$$\lim_{x\to x_0}\lim_{y\to y_0}f(x,y)=L_2.$$

Example 1: By using $\varepsilon - \delta$ definition show that

$$\lim_{(x,y)\to(0,0)}\frac{x+y}{x^2+1}=0.$$

Solution: Let $f(x,y) = \frac{x+y}{x^2+1}$

since
$$x^2 \ge 0 \Rightarrow x^2 + 1 \ge 1 \Rightarrow \frac{1}{x^2 + 1} \le 1$$

Also,
$$x^2 \le x^2 + y^2 \Rightarrow |x| \le \sqrt{x^2 + y^2}$$

And
$$|y| \le \sqrt{x^2 + y^2}$$

Let $\varepsilon > 0$ be given

If
$$0 < \sqrt{x^2 + y^2} < \delta$$
 then,

Consider

$$|f(x,y) - 0| = \left| \frac{x+y}{x^2+1} - 0 \right| = \left| \frac{x+y}{x^2+1} \right| \le \frac{|x|+|y|}{x^2+1} \le |x| + |y|$$

$$\le \sqrt{x^2 + y^2} + \sqrt{x^2 + y^2} < \delta + \delta = 2\delta = \varepsilon$$

 \therefore for given $\varepsilon > 0$, $\exists \delta = \frac{\varepsilon}{2}$ such that

$$|f(x,y) - L| < \varepsilon$$
 whenever $0 < \sqrt{x^2 + y^2} < \delta$

$$\lim_{(x,y)\to(0,0)}\frac{x+y}{x^2+1}=0.$$

Example 2: By using $\varepsilon - \delta$ definition show that

$$\lim_{(x,y)\to(0,0)} \frac{4xy^2}{x^2 + y^2} = 0.$$

Solution: Let
$$f(x, y) = \frac{4xy^2}{x^2 + y^2}$$

Since,
$$|x| \le \sqrt{x^2 + y^2}$$
 and $y^2 \le x^2 + y^2 \Rightarrow \frac{y^2}{x^2 + y^2} \le 1$

Let $\varepsilon > 0$ be given

If
$$0 < \sqrt{x^2 + y^2} < \delta$$
 then,

Consider

$$|f(x,y) - 0| = \left| \frac{4xy^2}{x^2 + y^2} - 0 \right| = \left| \frac{4xy^2}{x^2 + y^2} \right| \le 4|x| \le \sqrt{x^2 + y^2} < \delta = \varepsilon$$

 \therefore for given $\varepsilon > 0$, $\exists \delta = \varepsilon$ such that

$$|f(x,y) - L| < \varepsilon$$
 whenever $0 < \sqrt{x^2 + y^2} < \delta$

Limit Along Path

Example3: Examine whether the limit exist. If exist find it.

$$\lim_{(x,y)\to(0,0)} \frac{x^2y}{x^3 + y^3}$$

Solution: Taking limit along y = mx

$$\lim_{(x,y)\to(0,0)} \frac{x^2y}{x^3 + y^3} = \lim_{x\to 0} \frac{x^2(mx)}{x^3 + (mx)^3}$$

$$= \lim_{x\to 0} \frac{mx^3}{x^3 + m^3x^3}$$

$$= \lim_{x\to 0} \frac{1 + m^3}{1 + m^3}$$

For different values of m we get different limit therefore limit does not exist

Example4:Example3:Examine whether the limit exist. If exist find it.

Solution:
$$\lim_{(x,y)\to(1,2)} \frac{\sin^{-1}(xy-2)}{\tan^{-1}(5xy-10)}$$

$$= \lim_{(x,y)\to(1,2)} \frac{\sin^{-1}(xy-2)}{\tan^{-1}(5xy-10)} = \lim_{(x,y)\to(1,2)} \frac{\sin^{-1}(xy-2)}{\tan^{-1}(5xy-10)} \times \frac{(xy-2)}{(xy-2)}$$

$$= \lim_{(x,y)\to(1,2)} \frac{\sin^{-1}(xy-2)}{(xy-2)} \times \frac{(xy-2)}{\tan^{-1}5(xy-2)}$$

$$= 1 \times \frac{1}{5} = \frac{1}{5}.$$

Example5:Test the existence of simultaneous limit and repeated limits of the following function at origin.

$$f(x,y) = \frac{x-y}{x+y}$$

Solution: Repeated limit

$$\lim_{x \to 0} \lim_{y \to 0} \frac{x - y}{x + y} = \lim_{x \to 0} \frac{x - 0}{x + 0} = \lim_{x \to 0} 1 = 1$$

$$\lim_{y \to 0} \lim_{x \to 0} \frac{x - y}{x + y} = \lim_{y \to 0} \frac{0 - y}{0 + y} = \lim_{y \to 0} (-1) = -1$$

Both repeated limit exists but not equal

Simultaneous limit

$$\lim_{(x,y)\to(0,0)}\frac{x-y}{x+y}$$

Taking limit along y = mx

$$\lim_{(x,y)\to(0,0)} \frac{x-y}{x+y} = \lim_{x\to 0} \frac{x-mx}{x+mx}$$

$$= \lim_{x\to 0} \frac{1-m}{1+m}$$

$$= \frac{1-m}{1+m}$$

Limit depends on m therefore simultaneous limit does not exist.

Example6: Show that $\lim_{(x,y)\to(0,0)}\frac{x^4}{x^4+y^2}$ does not exist by considering different paths.

Solution: 1) take limit along X-axis i.e. y = 0

$$\lim_{(x,y)\to(0,0)} \frac{x^4}{x^4 + y^2} = \lim_{y\to 0} \frac{x^4}{x^4 + y^2} = \frac{x^4}{x^4} = 1$$

2) take limit along Y - axis i.e. x = 0

$$\lim_{(x,y)\to(0,0)} \frac{x^4}{x^4 + y^2} = \lim_{x\to 0} \frac{x^4}{x^4 + y^2} = 0$$

For two different paths we get two different limits, therefore limit does not exist.

Example 6: Show that $\lim_{(x,y)\to(0,0)} \frac{x^2+y}{y}$ does not exist by considering different paths.

Solution: 1) taking limit along Y - axis i.e. x = 0

$$\lim_{(x,y)\to(0,0)} \frac{x^2+y}{y} = \lim_{x\to 0} \frac{x^2+y}{y} = \frac{0+y}{y} = 1$$

2) Taking limit along $y = x^2$

$$\lim_{(x,y)\to(0,0)} \frac{x^2+y}{y} = \lim_{y\to x^2} \frac{x^2+y}{y} = \frac{x^2+x^2}{x^2} = 2$$

For two different paths we get two different limits, therefore limit does not exist.

Substitution of Polar Co-ordinates

If it is difficult to find the limit $\lim_{(x,y)\to(0,0)} f(x,y)$ in rectangular co-ordinates then use the substitution $x=r\cos\theta\ and\ y=r\sin\theta$. In that case $(x,y)\to(0,0)$ is equivalent to $r\to0$.

$$\lim_{(x,y)\to(0,0)} f(x,y) = \lim_{r\to 0} f(r\cos\theta, r\sin\theta)$$

Theorem: If a function f is bounded in a deleted neighbourhood of (x_0, y_0) and $\lim_{(x,y)\to(0,0)} g(x,y) = 0$, then

$$\lim_{(x,y)\to(0,0)} f(x,y) \cdot g(x,y) = 0$$

Example 7: Evaluate $\lim_{(x,y)\to(0,0)} \frac{x^3-xy^2}{x^2+y^2}$, if exist.

Solution: Put $x = r\cos\theta$ and $y = r\sin\theta$

$$\lim_{(x,y)\to(0,0)} \frac{x^3 - xy^2}{x^2 + y^2} = \lim_{r\to 0} \frac{r^3 \cos^3 \theta - r \cos \theta r^2 \sin^2 \theta}{r^2 (\cos^2 \theta + \sin^2 \theta)}$$

$$= \lim_{r\to 0} \frac{r^3 (\cos^3 \theta - \cos \theta \sin^2 \theta)}{r^2}$$

$$= \lim_{r\to 0} r(\cos^3 \theta - \cos \theta \sin^2 \theta)$$

$$\therefore \lim_{(x,y)\to(0,0)} \frac{x^3 - xy^2}{x^2 + y^2} = 0$$

Since $\lim_{r\to 0} r=0$ and $|\cos^3\theta-\cos\theta\sin^2\theta|\leq |\cos^3\theta|+|\cos\theta||\sin^2\theta|\leq 1+1=2$ i.e. $(\cos^3\theta-\cos\theta\sin^2\theta)$ is bounded.

Exercise

1) By using $\varepsilon - \delta$ definition show that

$$\lim_{(x,y)\to(0,0)} \frac{x+y}{2+\cos x}$$
.

- $\lim_{(x,y)\to(0,0)} \frac{x+y}{2+\cos x}.$ 2) Evaluate the $\lim_{(x,y)\to(0,0)} \frac{y^2}{x^2+v^2}$
- 3) By using different paths show that $\lim_{(x,y)\to(0,0)} \frac{x^4}{x^4+y^2}$ does not exist.
- 4) Evaluate $\lim_{(x, y) \to (0,0)} \frac{x^3 y^3}{x^2 + y^2}$.
- 5) Evaluate $\lim_{(x,y) \to (0,0)} \frac{x^3y^2}{x^6+y^4}$
- 6) Evaluate $\lim_{(x,y) \to (2,1)} \frac{\sin^{-1}(xy-2)}{\tan^{-1}(3xy-6)}$

References: Text book of Multivariable Calculus I prepared by B. O. S. in Mathematics, Savitribai Phule Pune University, Pune.

Thank You