Dr. V.D.Kulkarni, Dept of Physics HutatmaRajguruMahavidyalaya, Rajgurunagar (Pune)

Teaching Plan

(2022-23)

PH 333 Classical Mechanics

Sr. No.	Topics	Month
01	1. Motion of system of a particles Introduction –Newton's laws	
02	Motion of a charged particle in constant electric, magnetic and electromagnetic field	
03	General features of motion, equation of orbit, Deduction of Kepler's laws of planetary motion, Orbits of artificial satellite, Problems	July -2022
04	System of particles, Centre of mass, Conservation of linear momentum, angular momentum, Energy of system of particles (statements only) Problems	
09	2. Motion in Central Force Field Central force, equivalent one body problem	
10	Motion in central force field	First week of August-2022
11	General features of motion, equation of orbit	S
12	Deduction of Kepler's laws of planetary motion Orbits of artificial satellite and Problems	
13	3.Scattering of Particles Elastic and inelastic scattering	Second and Third

14	Properties of Elastic and inelastic scattering	week of
15	Relation between lab and CM Frame	August-2022
1.6	Relation of angles between lab and CM Frame	
16	Inelastic scattering, Differential cross section, impact parameter ,Total differential cross section	
17	Relation of scattering angles between lab and CM Frame, problems	
18	4.Langrangian and Hamiltonian Formulation	
	Introduction	
19	Newton's laws, constraints, Holonomic and nonholonomic constraints, Principle of virtual work, D'Alembert's Principle	Last week of August-2022
20	Langrange's equation from D'Alembert's Principle	
	Simple Pendulum,Linear Harmonic Oscillator	
21	Hamiltonian and Hamiltone's equation	
22	Problems of Hamiltonian	
23	Problems of Langrange's method	
24	Problems of Hamiltonian method	

T.Y.B.Sc. PH 335: Computational Physics

Sr. No.	Topics	Month
01	1.Concepts of programming and Introduction to C	
	Programming	
	Definition and Properties of algorithms,	
	Algorithm development,	
02	Algorithm development,	
	Flow charts- symbols and simple flowcharts	C
03	Flow charts and Algorithms for Kinematic equations, Free	September-2022
	fall, Equation of state, Factorial of a	

	number.	
04	Types of programming language: Lower, middle and higher level languages.	
05	Structure of C program, Character set, key words,	
06	Constants andvariables, Variable names,	
07	Data types and their declarations, Symbolic Constants.	
08	Input/output functions: scanf (), printf (), getchar (), putchar (), getch (), gets (), puts ().	
09	Operators and Expressions: Arithmetic Operators, Relational Operators, LogicalOperators,	
10	Assignment Operators, Conditional Operator. Formatted input/output	
11	Control statements: If, if else, while, do while for loop, nested control structures	
12	(Nested if, nested loops), break, continue, switch- case statement, goto statement.	
13	Use of Library functions: e.g. mathematical, trigonometric, graphics.	
14	2. Arrays, Pointers and user defined functions Arrays: 1-D, 2-D and String	
15	Examples: Arranging numbers in descending and ascending order,	First Week of
16	Sum of matrices, multiplication of matrices.	Octomber-2022
17	Concept of Pointers	
18	User defined functions: Definitions and declaration of function, function prototype.	
19	Passing arguments (Call by value, Call by reference).	
20	Storage Classes: Auto, External, Static, Register variables.	
21	4. Computational Physics:	Second and Third Week of Octomber-
	Iterative methods: Discussion of algorithm and flowcharts	2022

	and writing C programs for finding	
22	single root of equation using bi-section method,	November-2022
	NewtonRaphson method.	
23	Discussion of algorithm and flowcharts and writing C	
	program for trapezoidal rule and	
	Simpson's 1/3rd rule	
24	3. Graphics in C:	
	Some simple graphic commands	
25	- Line, Circle, Arc, Ellipse, Bar., Problems	

Thermodynamics and Statistical Physics (PH-363)

Sr. No.	Topics	Month
01	Ch-1 - Kinetic Theory of gases	
	Mean Free Path Theory of gases	
02	Transport Phenomena, Viscosity	
03	Thermal conductivity and diffusion	Jan- 2023
04	Thermodynamic functions	
05	Enthalpy, Entropy, Internal Energy, Helmholtz Functions	
06	Maxwell's relations	
07	First and Second TdS equations	
	Specific and Latent heat equations	
08	Joule – Thomson's effect,	
	Problems	
09	Ch-2- Elementary Concepts of Statistics	
	Probability ,Distributions functions,Problems	
10	Random Walk Problem and	
	Bionomial distribution	First week of
11	Simple Random Problem, Calculation of mean Values	Feb2023
12	Probability distribution for large N	
13	Gaussian Probability distribution	
	and Problems	
14	Ch-3- Statistical distribution of system of particles and	
	Ensembles	
	State of Systems, Statistical Ensembles	

15	Basic Postulates,	
	Probability Calculations	Feb2023
16	Behavior of density of states	
17	Thermal. Mechanical Interactions,	
	Problems	
18		
	Micro canonical Ensembles, Canonical Ensembles	
19	Applications of Canonical Ensembles	
20	Molecules in ideal gas, Mean Values in Canonical Ensembles,	
	Problems	
21	Ch-4-Introduction to Quantum States	
	Quantum distribution function	
22	Maxwell – Boltzman Statistics,	First week of
	Bose – Einstein Statistics	March -2023
23	Fermi – Dirac Statistics	
24	Comparisions of B-E,M-B,F-D Statisctics, Applications of	
	Quantum Statstics	
25	Problems	
26	Internal Test	

LASERS (PH-366)

Sr. No.	Topics	Month
01	Chapter 1: Introduction to Lasers:	
	Duightistam of Lagran Interaction of addiction with motter	Second and Third
	Brief history of Lasers, Interaction of radiation with matter,	week of
	Energy levels, Population density, Boltzmann distribution,	March -2023
	Stimulated Absorption, Spontaneous Emission and Stimulated	
	Emission, Einstein's Coefficients, Einstein's relations.	
	Characteristics of Laser: Directionality, Mono-chromaticity,	
	Coherence,	
02	Chapter 2: Laser Action:	Last
		March -2023
	Population inversion, Condition for light amplification, Gain	
	coefficient, Active medium, metastable states. Pumping	
	schemes: three level and four level	
03	<u>Chapter 3: Laser Oscillator</u> :	April-2023
	Ontical feedback round twin sain switical nonvious	
	Optical feedback, round trip gain, critical population	

	inversion, Optical resonator, condition for steady state	
	oscillations, cavity resonance frequencies.	
04	Chapter 4: Laser Output:	April-2023
	Line-shape broadening: Lifetime broadening, Collision	
	broadening	
0.5		
05	Chapter 5: Types of Lasers:	April-2023
	Solid State Lasers – Ruby Laser, Diode Laser, Gas Lasers –	
	HeNe Laser, CO2 Laser	
06	Chapter 6: Applications of Lasers:	April-2023
	Industrial: welding, cutting, drilling Nuclear Science: laser	
	isotope separation, laser fusion, Medical: eye surgery	
07	Internal Test	

T.Y.B.Sc. Physics (Sem V) PHY-351: Mathematical Methods in Physics-II Year: 2022-2023 Teacher: A.B.Kanawade

Chapter No.	Month	Contents	Remarks
1	Sep 2022	1: Curvilinear Co-ordinates Review of Cartesian, spherical and cylindrical co-ordinate, transformation equations, General Curvilinear co-ordinate system: Co-ordinate surface, co-ordinate lines, length, surfaces and volume elements in curvilinear co-ordinate system. Orthogonal curvilinear co-ordinate system, expressions for gradient, divergence, Laplacian, and curl, special case for gradient, divergence and curl in Cartesian, spherical polar and cylindrical co-ordinate system, Problems.	
2	Sep/Oct 2022	2: The Special Theory of Relativity Introduction, Newtonian relativity, Galilean transformation equation, Michelson-Morley experiment, Postulates of special theory of relativity, Lorentz transformations, Kinematic effects of Lorentz transformation, Length contraction, Proper time, Problems.	
3	Sep/Oct 2022	3: Partial Differential Equations Introduction to Partial differential equations (PDE), General methods for solving second order PDE, Method of separation of variables in Cartesian, Spherical polar and cylindrical co-ordinate system (two dimensional Laplace's equation, one dimensional Wave equation), Singular points (x = x0), Solution of differential equation-Statement of Fuch's theorem, Frobenius method of series solution.	

4	Oct 2022	4: Special Functions
		Introduction, generating function for Legendre Polynomials: Pn(x),
		Properties of Legendre Polynomials,
		Generating function for Hermite Polynomials: Hn(x),
		Properties of Hermite Polynomials, Bessel function of first kind: Jn (x),
		Properties of Bessel function of first kind,
		Problems.

Year: 2022-2023

Teacher: A.B.Kanawade

T.Y.B.Sc. Physics (Sem VI) PHY-361: Solid State Physics

Chapter	Month	Contents	Remarks
No.	Mar / Apr	1: The Crystalline Structures (10 L)	
1	2022	Lattice, Basis, Translational Vectors, Primitive Unit Cell, Symmetry Operations, Different types of lattices: 2D and 3D (Bravais lattices) Miller indices, Inter Planer Distances, SC, BCC and FCC structures, Packing Fraction, Crystal structures NaCl, diamond, CsCl, ZnS, HCP, Concept of Reciprocal Lattice and its properties, Problems	
2	April 2022	2: X ray Diffraction and Experimental Methods (9 L) Bragg's Diffraction, Bragg's Law, Experimental X-ray diffraction Methods: The Laue Method, Bragg's Spectrometer, The Powder Crystal Method, Analysis of cubic structure by Powder Method, Ewald's Construction, Bragg's Diffraction condition in direct and reciprocal lattice, Problems	
3	Apr/May 2022	3: Free Electron and Band Theory of Metals (9L) Assumptions of Classical and Somerfield Free Electron model, Energy levels and Density of States (One and Three Dimensions), Nearly free electron model, Fermi energy, Fermi level, Hall Effect, Mobility, Hall Angle Band Theory of Solids: Origin of energy gap, Energy bands in Solids, Distinction between metal, semiconductor and insulator, Problems	
4	May 2022	4: Magnetism (8L) Diamagnetism, Langevin theory of Diamagnetism,	

Paramagnetism, Langevin theory of Paramagnetism,	
Ferromagnetism, Antiferromagnetism, Ferromagnetic	
Domains, Hysteresis, Curie temperature, Neel temperature	2 ,
Superconductivity, Problems	

Year: 2022-2023

Teacher: A.B.Kanawade

T.Y.B.Sc. Physics (Sem VI) PHY-362: Quantum Mechanics

Chapter No.	Month	Contents	Remarks
1	April	Origin of Quantum Mechanics: (08 L)	
	2022	1. Historical Background: Review of Black body radiation, photoelectric	
		effect	
		2. Matter waves - De Broglie hypothesis Davisson and Germer experiment.	
		3. Wave particle duality	
		4. Concept of wave function, wave packet, phase velocity, group velocity and relation between them	
		5. Heisenberg's uncertainty principle with Electron diffraction experiment, different forms of uncertainty. Problems	
2	April	The Schrodinger equation: (10 L)	
	2022	1. Physical interpretation of Wave function	
		2. Schrodinger time dependent equation.	
		3. Schrodinger time independent equation (Steady state equation).	
		4. Requirements of wave function.	
		5. Probability current density, equation of continuity and its physical significance.	
		6. An operator in Quantum mechanics Eigen function and Eigen values.	
		7. Expectation value – Ehrenfest's theorem(omly statements), Problems	
3	May	Applications of Schrodinger Steady state equation: (14 L)	
	2022	1. Free particle.	
		2. Step Potential	
		3. Potential barrier(Qualitative discussion), Barrier potential and tunneling effect.	
		4. Particle in infinitely deep potential well (one - dimension).	
		5. Schroedinger equation in spherical polar coordinate system	

		6. Rigid rotator (Free axis) 7. Problems	
5	May 2022	Operators in Quantum Mechanics: (04 L) 1. Hermitian operator. 2. Position, Momentum operator, angular momentum operator, and total energy operator (Hamiltonian). 3. Commutator brackets- Simultaneous Eigen functions. 4. Commutator algebra. 5. Commutator brackets using position, momentum and angular momentum operator. 6. Concept of parity according to quantum mechanics, parity operator and its Eigen values. 7. Applications of operators in quantum mechanics 8. Problems	

Year: 2022-2023

Teacher: A.B.Kanawade

S.Y.B.Sc. Physics (Sem IV) PHY-242: Optics

Chapter	Month	Contents	Remarks
No. 1	April 2022	1. Geometrical optics and Lens aberrations: (12L) (a) Geometrical optics: 1.1 Introduction to lenses and sign conventions. 1.2 Thin lenses: Lens equation for single convex lens 1.3 Lens maker equation 1.4 Concept of magnification, deviation and power of a thin lens 1.5 Equivalent focal length of two thin lens system 1.6 Concept of cardinal points 1.7 Problems	
		(b) Lens Aberrations: 1.8 Introduction to Aberration 1.9 Types of aberration: Monochromatic and Chromatic Aberration (Only discussion)	
2	April /May 2022	2. Optical Instruments: (6L) 2.1 Introduction to optical instruments 2.2 Types of optical instruments: Simple Microscope, Compound Microscope and Astronomical telescope (only construction and working) 2.3 Eyepiece: Ramsden's eye piece (Expression), Huygens eye piece and Gauss's eyepiece (only qualitative discussion) 2.4 Problems.	
3	May 2022	3. Interference and Diffraction: (12L) (a) Interference: 3.1 Introduction to interference	

		3.2 Types of Interference (only discussion) 3.3 Phase change on reflection (Stokes treatment). 3.4 Interference due to reflected light 3.5 Interference due to transmitted light. 3.6 Newton's ring (to calculate wavelength) 3.7 Problems
		(b) Diffraction: 3.8 Introduction to diffraction 3.9 Types of diffraction (only discussion) 3.10 Fraunhoffer's diffraction due to single slit and double slit (only qualitative discussion) 3.11 Plane transmission grating and grating equation (only principal maxima) 3.12 Rayleigh criterion for resolution (only qualitative discussion), 3.13 Problems
4	May / June 2022	4. Polarization: (6L) 4.1 Introduction to polarization 4.2 Brewster's law 4.3 Malus's Law 4.4 Polarization by double refraction 4.5 Nicol Prism 4.6 Application of polarization 4.7 Problems

Dr. V.B. Deshmukh Department of Physics HRM Rajgurunagar

Teaching Plan 2022-23

1) S. Y. B. Sc. (PHY-241) Oscillations, Waves and Sound

Month	Topic	Period
9/3/2023	Undamped Free Oscillations	7
to 21/3/2023	Equilibrium conditions, Equations of linear and angular SHM. Differential equation of linear SHM, Composition of two perpendicular linear	

	SHM for frequency ratio 1:1 and 1:2, Lissajous	
	figures and their demonstrations	
	inguies and their commonstrations	
22/3/203	Damped Oscillations	7
to	Differential associate of downed harmania	
3/4/2023	Differential equation of damped harmonic oscillator and its solution, different cases,	
	´	
	Logarithmic decrement, Energy of damped	
	harmonic oscillator, Quality factor, LCR series circuit	
	Circuit	
4/4/2023	Forced Oscillations	8
to		
17/4/2023	Equation of forced oscillations and its solution.	
	Resonance, Velocity resonance, Amplitude	
	resonance, Sharpness resonance and half width. Average energy of forced oscillator, Quality	
	factor, LCR series circuit	
	factor, LCR series circuit	
18/4/2023	Wave Motion	6
to		
26/4/2023	Equation of longitudinal and transverse wave	
	and its solution, energy density and intensity of a	
	wave, Seismic wave and gravitational waves	
27/4/2023	Sound and Doppler Effect	8
to		
16/5/2023	Characteristics of sound, Doppler effect in	
	sound, Expression for apparent frequency in	
	different cases, Symmetric and Asymmetric	
	nature Doppler effect, Applications	

2) T. Y. B. Sc. PHY-364 Nuclear Physics

Month	Topic	Period
14/2/2023 to	Nuclear Structure, Properties and Radioactivity	12
26/2/2023	Composition of nucleus, Characteristics of nucleus, Mass defect and Binding energy,	

	packing fraction. Classification of nuclei, stability of nuclei. Radioactive disintegration, properties of α, β, γ rays, Law of radioactive decay, half life, mean life, activity and specific activity, successive disintegration and equilibrium of radioisotopes, Application of radioactivity.	
27/2/2023 to 6/3/2023	Particle Accelerator and Radiation Detectors Linear accelerator (LINAC), Cyclic accelerator (Cyclotron), Accelerators in India. Nuclear detectors, G. M. counter and solid state detector.	6
7/3/2023 to 23/3/2023	Nuclear forces and Nuclear Models Classification of nuclear forces, Meson theory, properties of nuclear forces, deuteron problem, Elementary particles, Quark models, Shell model, Liquid drop model, Semi-empirical B. E. formula.	9
24/3/2023 to 15/4/2023	Nuclear Reactions and Reactor Theory Nuclear reaction and conservation laws, Q value equation, Exothermic and endothermic reaction, compound nucleus, Nuclear fission and fusion reaction, stellar energy, chain reaction and critical mass. Nuclear reactor in India.	6
2/5/2023 to 10/5/2023	Nuclear reactor and its basic components, homogeneous and heterogeneous reactors, power reactor	3

2) T.Y.B.Sc. 3611-SEC(AB) Instrumentation for Agricultural

Month	Topic Topic	Period
24/3/2023 to 25/3/2023	Introduction Necessity of agricultural instrument, sensor used in agricultural	2
26/3/2023 to 31/3/2023	Soil Properties & Sensing Properties of soil, Permeability and seepage analysis, Mohr's circle of stress, active and passive earth pressures, stability and slopes. Sensors, sonic anemometers, hygrometers, thermocouples, open and close path gas analyzers.	4
1/4/2023 to 8/4/2023	Instrumentation in Continuous & Batch process Sugar plant, flow diagram, sensors and instrumentation setup, flow diagram of fermenter and control process, dairy industry flow chart and instrumentation set up for it. Juice extraction control process and instrumentation set up.	4
9/4/2023 to 21/4/2023	Instrumentation in Irrigation Auto drip and sprinkler irrigation system, Upstream and downstream control concept, SCADA for DAM parameters and control	4
22/4/2022- 29/4/2022	Greenhouse Parameters & Instrumentation Concept and construction of green house effect, merits and demerits, ventilation, cooling and heating.wind speed, temperature and humidity, soil moisture, rain gauge, CO ₂ control area and wetness, EM radiation, photosynthesis	4

K.T.S.P. Mandal's HUTATMA RAJGURU MAHAVIDYALAYA, RAJGURUNAGAR Tal-Khed, Dist-Pune 410 505 DEPARTMENT OF PHYSICS

Teaching Plan Academic Year-2022-2023 Sem- I

F.Y.B.Sc. CBCS Pattern

Name: Mr. Barne N.D. PHY-111 Mechanics and Properties of Matter

Sr. No.	Months	Topics	Lectures
110.			09
		1. Motion:	0)
01	Third week of	Introduction to motion, Types of motion, Displacement,	
V-	Aug. 2022	Velocity, Acceleration, Inertia, Newton's laws of motion	
	-	with their explanations, Various types of forces in nature,	
	Second week	Frames of reference (Inertial and Non inertial), Laws of	
	of Sept. 2022	motion and it's real life applications, Problems	
		2. Work and Energy:	07
0.0		Kinetic energy, Work Energy Theorem, Work done with	
02	Third week of	constant force, Work done with varying force (spring	
	Sept.2022	force), Conservative and Non conservative forces,	
	-	Potential energy, Law of energy conservation,	
	First week of Oct. 2022	Gravitational potential energy, Problems	
	Oct. 2022	3. Fluid Mechanics:	08
		Concept of viscous force and viscosity, Coefficient of	
03	Second week	viscosity, Steady and Turbulent flow, Reynolds number,	
	of Oct. 2022	Equation of continuity, Bernoulli's Principle,	
	_	Applications of Bernoulli's Principle (Ventury Meter,	
	First week of	PitotTube), Applications of viscous fluids, Problems.	
	Nov. 2022		
		4. Properties of Matter:	12
		Surface tension, Angle of contact, Factors affecting	
04	First week of	surface tension, Jaeger's method for determination of	
	Nov.2022	surface tension, Applications of surface tension.	
	-	Stress and Strain, Hook's law and Coefficient of	
	Third week of	elasticity, Young's modulus, Bulk modulus, Modulus of	

	Internal Exam	
lov. 2022	rigidity, Work done during longitudinal strain, Volume strain, Shearing strain.	

K.T.S.P. Mandal's

HUTATMA RAJGURU MAHAVIDYALAYA, RAJGURUNAGAR Tal-Khed, Dist-Pune 410 505 DEPARTMENT OF PHYSICS

Teaching Plan Academic Year-2022-2023 Sem- V

T.Y.B.Sc.

Name: Mr. Barne N.D. Subject: PH-352 Electrodynamics

Months	Topics	Lectures
		12
Second week	1. Electrostatics:	
of Sept. 2022	1.1. Coulomb's law, Gauss law, Electric field,	
-	Electrostatic Potential	
First week of	1.2. Potential energy of system of charges.	
Nov. 2022	1.3. Statement of Poisson's equation, Boundary Value	
	problems in electrostatics-solution of Laplace equation in	
	Cartesian system,	
	1.4. Method of image charges: Point charge near an	
	infinite grounded conducting plane, Point charge near	
	grounded conducting sphere.	
	1.5. Polarization P, Electric displacement D, Electric	
	susceptibility and dielectric constant, bound volume and	
	surface charge densities.	
	1.6. Electric field at an exterior and interior point of	
	dielectric.	
	2.Magnetostatics:	12
First week of	2.1. Concepts of magnetic induction, magnetic flux and	
Nov. 2022-	magnetic field	
Third week of	2.2. Magnetic induction due to straight current carrying	
Nov. 2022	conductor, Energy density in magnetic field,	
	magnetization of matter. Relationship between B,H and	
	M.	
	2.3 Biot-Savart's law, Ampere's law for force between	
	two current carrying loops, Ampere's circuital law,	

	2.4Equation of continuity, Magnetic vector potential A.	
	2.5. Magnetic susceptibility and permeability, Hysteresis	
	loss, B-H curve.	
	3. Electrodynamics:	12
Fourth week	3.1.Concept of electromagnetic induction, Faradays law of	
of Nov. 2023	induction, Lenz's law, displacement current,	
_	generalization of Amperes' law	
Fourth week	3.2. Maxwell's equations (Differential and Integral form)	
of Dec. 2023	and their physical significance	
	3.3. Polarization, reflection & refraction of	
	electromagnetic waves through media	
	3.4. Wave equation and plane waves in free space.	
	3.5. Poynting theorem & Poynting vector, Polarizations of	
	plane wave.	
	3.6. Microscopic form of ohm's law ($J = \sigma.E$)	
	Internal Exam	

Mr. Barne N. D.

K.T.S.P. Mandal's

HUTATMA RAJGURU MAHAVIDYALAYA, RAJGURUNAGAR

Tal-Khed, Dist-Pune 410 505 DEPARTMENT OF PHYSICS

Teaching Plan

2022-2023

DEPARTMENT OF PHYSICS

SEM VI

T.Y.B.Sc.

Name: Mr. Barne N.D.

PHY-365 (A): Electronics-II

Months	Topic taken	Periods
Second week of Feb.2023 - Second week of March 2023	 1: Semiconductor Devices: a. LED and Photodiode, Optocoupler. (Working Principles) Problems. Ref. 1. b. BJT: Transistor amplifier classifications - Class A, B, C and AB (working only), Differential amplifier (transistorized), Problems. Ref. 1. c. Field Effect Transistor: JFET (Introduction, classification, principle, working and IV characteristics) MOSFETs (DE-MOSFET and E only MOSFET). Problems. 	09
Second week of March 2023 - First week of April 2023	2: Applications of Semiconductor Devices: a. Three Pin Regulators: Block diagram of 3-pin IC regulator, study of IC-78XX, 79XX. Dual Power Supply using IC-78XX, 79XX. Ref. 1 b. Switching Regulators (SMPS): Introduction, Block diagram, Advantages and Disadvantages. Ref. 4 c. Modulation and Demodulation: Concept of Carrier Wave, Need of Modulation and Demodulation, Methods of Modulation like AM, FM, PM (Concepts Only), d. Concept of Modulation Index, Upper and Lower Side Band Frequencies in AM. Problems	09
Second week of	3: Integrated Circuits: a. Integrated Circuits: Introduction, Scale of Integration, Advantages and drawbacks of IC Ref.4	09

Apr. 2023 - Third week of Apr.2023	b. OP-AMP Applications as Integrator, Differentiator, Comparator. Ref. 1 c. Timer IC-555: Block diagram, Astable, monostable multivibrator (working and design). Problems	
	INERNAL EXAM	
Third week of Apr.2023 - Fourth week of April 2023	4: Combinational and Sequential Circuits: a. Combinational Circuits: Introduction to SOP and POS equation. Concept of Standard SOP and POS equation. Concept of K-map and their use in reduction of Boolean expressions, design of half adder, full adder, half subtract, Study of binary to gray and gray to binary code conversion. Problems. Ref. 2 b. Sequential Circuits: RS flip flop using NAND/NOR, clocked RS, D, JK and T-flip flops. Application of flip flops in Sequential Circuits as Counters and Registers. Asynchronous and Synchronous Counters. (3-bit Counter), Shift Registers and their types of operation -SISO, SIPO, PISO, PIPO (Concepts only).	09

Mr. Barne N. D.

K.T.S.P. Mandal's

HUTATMA RAJGURU MAHAVIDYALAYA, RAJGURUNAGAR

Tal-Khed, Dist-Pune 410 505 DEPARTMENT OF PHYSICS

Teaching Plan 2022-2023

DEPARTMENT OF PHYSICS

SEM II

F.Y.B.Sc.

Name: Mr. Barne N.D. PHY-121 Heat and Thermodynamics

Months	Topic taken	Periods
	1. Fundamentals of Thermodynamics	10
First week	Concept of thermodynamic state, Equation of state, Van	
of March	der Waal's equation of state, Thermal equilibrium, Zeroth	
2023	law of thermodynamics, Thermodynamic processes:	
-	Adiabatic, Isothermal, Isobaric and Isochoric changes,	
Third	Indicator diagram, Work done during isothermal change,	
week of	Adiabatic relations, Work done during adiabatic change,	
March	Internal energy, Internal energy as state function, First law	
2023	of thermodynamics, Reversible and Irreversible changes,	
	Problems.	
	2. Applied Thermodynamics	09
Fourth	Conversion of heat into work and it's converse, Second	
week of	law of thermodynamics, Concept of entropy, Temperature -	
Apr. 2023	entropy diagram, T-dS equations, Clausius - Clapeyron	
-	latent heat equations, Problems.	
First week		
of May		
2023		
First week	3. Heat Transfer Mechanisms	09
of May	Carnot's cycle and Carnot's heat engine and its efficiency,	
2023 –	Heat Engines: Otto cycle & its efficiency, Diesel cycle	
Second	&its efficiency, Refrigerators: General principle and	
week of	coefficient of performance of refrigerator, Simple structure	

May 2023	of Vapor compression refrigerator, Air Conditioning: Principle and it's applications, Problems INERNAL EXAM	
Second week of May 2023	4. Thermometry Concept of heat & temperature, Principle of thermometry, Temperature scales & inter-conversions, Principle, Construction and Working: (Liquid thermometers, Liquid filled thermometers, Gas filled thermometers, Bimetallic thermometers, Platinum resistance thermometer, Thermocouple), Problems	08

Mr. Barne N. D.