K. T. S. P. Mandal's

Hutatma Rajguru Mahavidyalaya , Rajgurunagar Department Of Statistics Syllabus Completion Report Academic Year 2022-23

Term- I

Sr.No	Class	Paper	Name of Teacher
1	F.Y.B.Sc	Descriptive Statistics I	Thorat S.R.
2	F.Y.B.Sc	Discrete Probability	Thorat S.R.
3	S.Y.B.Sc	Discrete Probability Distributions	Thorat S.R.
		and Time series	
4	S.Y.B.Sc	Continuous Probability	Thorat S.R.
		Distributions	

Class: F.Y.B.Sc

Paper: Descriptive Statistics I.

Month	Topic	Subtopic
	1.	1.1 Meaning of Statistics as a Science.
	Introduction	1.2 Importance of Statistics.
	to	1.3 Scope of Statistics:
	Statistics	1.4 Statistical organizations in India and their
		functions:
Aug 2022		
		2.1 Types of characteristics:
	2. Population	2.2 Types of data:
	and Sample	2.3 Notion of a statistical population
	•	2.4 Methods of sampling
		1 6
		3.1 Classification
	3.Presentation	3.2 Frequency Distribution

	0.7	2226.1.1.6.1.16.7
	of data	3.3 Methods of classification
		3.4 Cumulative frequencies
		3.5 Relative frequency
		3.6 Guidelines for choice of classes
		3.7 Graphical representation of statistical data
		3.8 Stem and leaf chart
		3.9 Data Analysis and interpretation
Aug 2022	4. Measures of	4.1 Introduction
	central	4.2 Objectives of Measures of Central Tendency
	tendency	4.3 Arithmetic Mean (A.M.)
		4.4 Trimmed mean
		4.5 Median
		4.7 Geometric mean
Sept 2022		4.8 Mode Harmonic mean
		4.9 Weighted means
		4.9 Partition values
		4.10 Box and whisker plot
		Wie Bon und Windster prot
		5.1 Introduction
	5. Measures of	
	Dispersion	5.3 Range and Coefficient of range
	Dispersion	5.4 Quartile deviation
		2.1 Quartile de viation
		5.5 Mean deviation and coefficient of mean
Oct 2022		deviation
000 2022		5.6 Mean square deviation
		5.7 Variance, standard deviation, coefficient of
		variation
		1 100000000
Nov 2022	6. Moments	6.1 Raw moments (m'r) for ungrouped and grouped
1107 2022		data
		6.2 Central moments (mr) for ungrouped and
		grouped data
		6.3 Relations between central moments and raw
		moments, upto 4-th order
		7.1 Concept of skewness of frequency distribution,
	1	7.1 Concept of skewness of frequency distribution,

Nov 2022	7. Skewness and Kurtosis	positive skewness, negative skewness, symmetric frequency distribution. 7.2 Bowley's coefficient of skewness 7.3 Karl Pearson's coefficient of skewness.
140V 2022		 7.3 Karri earson's coefficient of skewness. 7.4 Measures of skewness based on moments (β1,γ1). 7.4 Concepts of kurtosis, leptokurtic, mesokurtic and platykurtic frequency distributions.
		7.5 Measures of kurtosis based on moments ($\beta 2, \gamma 2$).
Nov , Dec 2022	8. Theory of Attributes	 8.1 Attributes: 8.2 Consistency of data upto 2 attributes. 8.3 Concepts of independence and association of two attributes. 8.4 Yule's coefficient of association (Q), -1 ≤ Q ≤ 1, interpretation.

${f Paper:}$ Discrete Probability and probability Distributions I

Class: F.Y.B.Sc

Month	Topic	Subtopic
Sept/Oct	1. Basics of	1.1 Experiments/Models, Ideas of deterministic and
2022	Probability	non-deterministic models.
	· ·	Random Experiment, concept of statistical regularity.
		1.2 Definitions of - (i) Sample space,
		(ii) Discrete sample space: finite and countably
		infinite, (iii) Event, (iv) Elementary event,
		(v) Complement of an event. (vi) Certain event
		(vii) Impossible event
		Concept of occurrence of an event.
		Algebra of events and its representation in set theory
		notation.
		Occurrence of following events.
		(i) at least one of the given events,
		(ii) none of the given events,
		(iii) all of the given events,
		(iv) mutually exclusive events,
		(v) mutually exhaustive events,
		(vi) exactly one event out of the given events.
		1.3 Classical definition of probability and its
		limitations.
		Probability model, probability of an event,
		equiprobable and non-equiprobable sample space,
		1.4 Axiomatic definition of probability. Theorems
		And results on probability with proofs based on
		axoomatic approach. Such as,
		$P(AUB) = P(A) + P(B) - P(A \cap B)$
		Generalisation
		$D(A \cup D \cup C) \cap C(A) = D(A) + D(A) + D(A) = 1 \cup D(A)$
		$P(AUBUC),0 \le P(A) \le 1, P(A) + P(A') = 1, P(\phi) = 0, P(A)$ $\le P(B)$ if A is subset of B. Boole's
		(_)
		inequality
		2.1 Definition of conditional probability of an event.
		Definition of independence of two events
		Definition of independence of two events

	2.Conditional Probability and Baye's theorem	$P(A \cap B) = P(A) \cdot P(B) \qquad \text{Pairwise} \\ \text{independence and mutual independence} \qquad \text{for three} \\ \text{events} \\ \text{Multiplication theorem} \\ P(A \cap B) = P(A) \cdot P(B A). \\ \text{Generalization to } P(A \cap B \cap C). \\ \text{2.2 Partition of the sample space} \\ \text{Proof of Bayes' theorem. Applications of Bayes'} \\ \text{theorem in real life} \\ \text{True Positive, False positive and sensitivity of test as} \\ \text{application of Baye's theorem.} \\$
Nov 2022	3. Univariate Probability Distributions (Defined on Discrete Sample Space)	 3.1 Concept and definition of a discrete random variable. 3.2 Probability mass function (p.m.f.) and cumulative distribution function (c.d.f.), F(⋅) of discrete random variable, properties of c.d.f 3.3 Mode and median of a univariate discrete probability distribution
Nov , Dec 2022	4. Mathematical Expectation (Univariate Random Variable)	4.1 Definition of expectation (Mean) of a random variable, expectation of a function of a random variable, , m.g.f. and c.g.f. Properties of m.g.f and c.g.f. 4.2 Definitions of variance, standard deviation (s.d.) and Coefficient of variation (c.v.) of univariate probability distribution, effect of change of origin and scale on mean, variance and s.d. 4.3 Definition of raw, central and factorial raw moments of univariate probability Distributions and their interrelations (without proof). 4.4 Coefficients of skewness and kurtosis based on moments.

Dec 2022	5. Some	5.1 Degenerate distribution, mean and variance	
	Standard	5.2 Uniform discrete distribution, p.m.f., c.d.f., mean,	
	Discrete	variance,	
	Probability	real life situations, comments on mode and median	
	Distributions	5.3 Bernoulli Distribution: p.m.f., mean, variance	
	- I	5.4 Binomial Distribution: p.m.f., mean, variance	
		5.5 Hypergeometric Distribution : p.m.f.,	
		Computation of probability, situations where this	
		distribution is applicable,	
		binomial approximation to hypergeometric	
		probabilities, mean and variance of	
		the distribution	

Paper : Discrete Probability Distributions and Time series

Class: S.Y.B.Sc (Sem-III)

Month	Topic	Subtopic
Sept	1. Statndard	1.1 Negative Binomial Distribution:
/Oct	Discrete	Probability mass function (p. m. f.)
2022	Distributions	
		Notation: $X \sim NB (k, p)$.
		Nature of p. m. f., negative binomial distribution as a waiting
		time distribution, M.G.F., C.G.F., mean, variance, skewness,
		kurtosis (recurrence relation between moments is not
		expected). Relation between geometric and negative binomial
		distribution.
		Poisson approximation to negative binomial distribution. Real
		life
Oct/Nov		1.2 Multinomial Distribution:
2022		Probability Mass function, Notation
		use of MGF to obtain means, variances, covariances, total
		correlation coefficients, multiple and partial correlation
		coefficients for k= 3, univariate marginal distribution,
		distribution of $X_i + X_j$, conditional distribution of X_i given X_i
		$+X_{j}=r$,
		variance – covariance matrix, rank of variance – covariance
		matrix and its interpretation and real life situations and

		applications.
		1.3 Truncated Distributions:
Nov 2022		Concept of Truncated distribution, truncation to the right, left and on both sides. Binomial distribution B(n, p) left truncated at X=0 (value zero is discarded), its p.m.f., mean, variance. Poisson distribution P(m) left truncated at X=0 (value zero is discarded), its p.m.f., mean, variance. Real life situations and applications.
Jan 2023	2.Time Series:	2.1 Meaning and utility of time series, Components of time series: trend, seasonal variations, cyclical variations, irregular (error) fluctuations or noise.
		2.2 Exploratory data analysis: Time series plot to (i) check any trend, seasonality in the time series (ii) learn how to capture trend.
		2.3 Methods of trend estimation and smoothing: (i) moving average, (ii) curve fitting by least square principle, (iii) exponential smoothing.
		2.4 Measurement of seasonal variations: i) simple average method, ii) ratio to moving average method, iii) ratio to trend where trend is calculated by method of least squares.
		2.5 Choosing parameters for smoothing and forecasting.2.6 Forecasting based on exponential smoothing.
		2.7 Double exponential smoothing i.e. Holt-Winters method
		2.8 Fitting of autoregressive model AR (1), plotting of residuals.
		2.9 Data Analysis of Real Life Time Series:

Paper: Continuous Probability Distributions Class: S.Y.B.Sc (Sem-III)

Month	Topic	Subtopic
Oct 2022	1.Continuous	1.1 Continuous sample space: Definition, illustrations.
	Univariate	Continuous random variable: Definition, probability
	Distributions:	density function (p.d.f.), cumulative distribution function
		(c.d.f.), properties of c.d.f. (without proof), probabilities of
		events related to random variable.
		1.2 Expectation of continuous r.v., expectation of function
		of r.v. $E[g(X)]$, mean, variance, geometric mean, harmonic
		mean, raw and central moments, skewness, kurtosis.
		1.3 Moment generating function(M.G.F.):Definition and
		properties, cumulant generating function (C. G.
		F.): definition, properties.
		1.4 Mode, median, quartiles.
		1.5 Probability distribution of function of r. v.: $Y = g(X)$
		using i) Jacobian of transformation for g(.) monotonic
		function and one-to-one, on to functions,
		ii) Distribution function for $Y = X^2$, $Y = X $ etc.,
		iii) M.G.F. of g(X).
Oct / Nov	2.Continuous	2.1 Continuous bivariate random vector or variable $b(X,$
2022	Bivariate	Y): Joint p. d. f., joint c. d. f, properties (without proof),
	Distributions:	probabilities of events related to r.v. (events in terms of
		regions bounded by regular curves, circles, straight lines).
		Marginal and conditional distributions.
		2.2 Expectation of r.v., expectation of function of r.v.
		E[g(X, Y)], joint moments, $Cov(X, Y)$, $Corr(X, Y)$,
		conditional mean, conditional variance,
		E[E(X Y = y)] = E(X), regression as a conditional
		expectation.
		2.3 Independence of r. v. (X, Y) and its extension to k
		dimensional r. v.
		Theorems on expectation: i) $E(X + Y) = E(X) + E(Y)$, (ii)
		E(XY) = E(X) E(Y), if X and Y are independent,
		generalization to k variables.
		E(aX + bY + c), $Var(aX + bY + c)$.
		-///-

		2.4 M.G.F. : $M_{X,Y}(t_1, t_2)$, properties, M.G.F. of marginal distribution of r. v.s., properties $M_{X,Y}(t_1, t_2) = M_X(t_1, 0) M_Y(0, t_2)$, if X and Y are independent r. v.s., $M_{X+Y}(t) = M_{X,Y}(t, t)$, $M_{X+Y}(t) = M_X(t) M_Y(t)$ if X and Y are independent r.v.s. 2.5 Probability distribution of transformation of bivariate
		$U = f_1(X,Y),$ $V = f_2(X,Y).$
Nov 2022	3.Standard Univariate Continuous Distributions:	3.1 Uniform or Rectangular Distribution: Probability density function (p.d.f.) Notation: X ~ U[a, b]. p. d. f., sketch of p. d. f., c. d. f., mean, variance, symmetry. Distribution of i) X - a, ii) b - X, iii) Y = F(X), where F(X) is the c. d. f. of continuous r. v. X. Application of the result to model sampling. (Distributions of X + Y, X - Y, XY and X/Y are not expected.)
Dec. 2022		3.2 Normal Distribution:
		p. d. f. curve, identification of scale and location parameters, nature of probability curve, mean, variance, M.G.F., C.G.F., central moments, cumulants, b_1 , b_2 , g_1 , g_2 , median, mode, quartiles, mean deviation, additive property, computations of normal probabilities using normal probability integral tables, probability distribution of: i) $^{X-m}$, ii) $aX + b$, iii) $aX + bY + c$, iv) $aX + bY +$

	Statement and proof of central limit theorem (CLT) for i. i. d. r. v. s with finite positive variance.(Proof should be using M.G.F.) Its illustration for Poisson and Binomial distributions.
Jan 2023	3.3 Exponential Distribution: Probability density function (p. d. f.) Nature of p. d. f., density curve, interpretation of a as rate and 1 / a as mean, mean, variance, M. G. F., C. G. F., c. d. f., graph of c. d. f., lack of memory property, median, quartiles. Distribution of min(X, Y) with X, Y i. i. d. exponential r. v. s.

K. T. S. P. Mandal's

Hutatma Rajguru Mahavidyalaya , Rajgurunagar Department Of Statistics Syllabus Completion Report Academic Year 2022-23 Term II

Sr.No	Class	Paper	Name of Teacher
1	F.Y.B.Sc	Descriptive Statistics II	Thorat S.R.
2	F.Y.B.Sc	Discrete Probability Distributions	Thorat S.R.
3	S.Y.B.Sc	Test of Significance and	Thorat S.R.
		Statistical Methods	
4	S.Y.B.Sc	Sampling Distributions and Exact	Thorat S.R.
		Test	

Paper: Descriptive Statistics II. Class: F.Y.B.Sc

Month	Topic	Subtopic
April 2023	1. Correlation	1.1 Bivariate data, Scatter diagram and interpretation.
		1.2 Concept of correlation between two variables
		1.3 Covariance between two variables (m11):
		1.4 Karl Pearson's coefficient of correlation (r)
		1.5 Spearman's rank correlation coefficient:
		compute Karl Pearson's correlation coefficient between
		ranks.
May 2023	2. Fitting of	2.1 Concept of dependent and independent variables.
	Curve	2.2 Identification of response and predictor variables and
		relation between them.
	(Regression	2.3 Simple linear regression model: $Y = a + b X + \varepsilon$
	Line)	2.4 Concept of residual, plot of residual, coefficient of
		determination

May 2023	3. Curve fitting	3.1 Necessity and importance of drawing second degree curve. 3.2 Fitting of second degree curve 3.3 Fitting of exponential Curve of the type Y=ab ^x and Y=aX ^b
May 2023	4. Index Number	 4.1 Introduction. 4.2 Definition and Meaning. 4.3 Problems/considerations in the construction of index numbers. 4.4 Simple and weighted price index 4.5 Simple and weighted price index 4.6 Laspeyre's, Paasche's and Fisher's Index numbers. 4.7 Consumer price index number (i) family budget method (ii) aggregate expenditure method. 4.3 Shifting of base, splicing, deflating, purchasing power. 4.4 Description of the BSE sensitivity and similar index numbers.

Paper: Discrete probability Distributions Class:F.Y.B.Sc

Month	Topic	Subtopic
April/ May 2023	1. Some Standard Discrete Probability Distributions	 1.1 Poisson distribution: m.g.f. and c.g.f. Moments, mean, variance, skewness and kurtosis, Additive Property for Poisson distribution Conditional distribution of X given (X+Y) for Poisson distribution. 1.2 Geometric distribution: Mean, variance, m.g.f. and c.g.f. Lack of memory Property.
May 2023	2. Bivariate Discrete Probability Distribution	 2.1 Definition of two-dimensional discrete random variable, its joint p.m.f. and its distribution function and their properties 2.2 Concept of identically distributed random variables. 2.3 Computation of probabilities of events in bivariate probability distribution. 2.4 Concepts of marginal and conditional probability distributions. 2.5 Independence of two discrete random variables based on joint and marginal p.m.f.s
May 2023	3.Mathematical Expectation (Bivariate Random Variable)	 3.1 Definition of raw and central moments, m.g.f, c.g.f. 3.2 Theorems on expectations 3.3 Conditional expectation. 3.4 Definitions of conditional mean and conditional variance. 3.5 Definition of covariance, coefficient of correlation, independence and uncorrelatedness of two variables. 3.6 Variance of linear combination of variables Var(aX + bY). Correlation coefficient

Paper: Test of Significance and Statistical Methods Class: S.Y.B.Sc (Sem-IV)

Month	Topic	Subtopic
March 2023	I) Tests of Hypothesis	Statistics and parameters, statistical inference: problem of estimation and testing of hypothesis. Estimator and estimate. Unbiased estimator (definition and illustrations only). Statistical hypothesis, null and alternative hypothesis, Simple and composite hypothesis, one sided and two sided alternative hypothesis, critical region, type I error, type II error, power of the test, level of significance, p-value. Two sided confidence interval, finding probabilities of type I error and type II error when critical regions are specified. i) Test for population mean equal to specified value ii) Test of equality of two population mean iii) Test for population proportion equal to specified value. iv) Test for equality of two population proportions.
March/April 2023	II) Multiple Linear Regression Model:	Definition of multiple correlation coefficient $RY.XX$. Derivation of the expression for the multiple correlation coefficient. Properties of multiple correlation coefficient Interpretation of coefficient of multiple determination Definition of partial correlation coefficient Fitting of regression plane of Y on X_1 and X_2 , by the method of least squares; obtaining normal equations, solutions of normal equations Residuals: Definition, order, derivation of variance, properties. Definition and interpretation of partial regression coefficients Properties of partial correlation coefficient:
May 2023	III) Dempgraphy	Vital events, vital statistics, methods of obtaining vital statistics, rates of vital events, sex ratios, dependency ratio. Death/Mortality rates: Crude death rate, specific (age,

		sex etc.) death rate, standardized death rate (direct and indirect), infant mortality rate. Fertility/Birth rate: Crude birth rate, general fertility rate, specific (age, sex etc.) fertility rates, total fertility rate. Growth/Reproduction rates: Gross reproduction rate, net reproduction rate. Interpretations of different rates, uses and applications. Trends in vital rates as revealed in the latest census.
April 2023	IV) Queuing Model	M/M/1: FIFO as an application of exponential distribution, Poisson distribution and geometric distribution: Inter arrival rate, service rate (μ), traffic intensity, queue discipline probability distribution of number of customers in queue, average queue length, average waiting time in: i) queue, ii) system.

Paper: Sampling Distributions and Exact Test Class: S.Y.B.Sc (Sem-IV)

Month	Topic	Subtopic
April 2023	1. Gamma Distribution	P.D.F, Nature of Probability curve, M.G.G,C.G.F, moments, Cumulants, Skewness, Kurtosis, Mode, Additive Property, Distribution of sum of i.i.d exponential variables.
April / May 2023	2.Chi-square Distribution	Definition of Chi-squarer. v. as sum of squares of i. i. d. standard normal variables Derivation of p. d. f. of with n degrees of freedom (d. f.) using M. G. F., nature of p. d. f. curve, computations of probabilities using tables of distribution. mean, variance, M. G. F., C. G. F., central moments, mode, additive property.
	3.Student's t-distribution	Definition of T r. v. with n d. f. Derivation of p. d. f., nature of probability curve, mean, variance, moments, mode, use of tables of t-distribution for calculation of probabilities, statement of normal approximation.
May 2023	4.Snedecore's F-distribution:	Definition of F r. v. with n ₁ and n ₂ d. f. Derivation of p. d. f., nature of probability curve, mean, variance, moments, mode. Distribution of 1/F use of tables of F-distribution for calculation of probabilities. Interrelations between Chi-Square, T and F distribution. Tests based on chi-square distribution: Test for independence of two attributes arranged in 2 X2 contingency table. (With Yates' correction).

5.Test of **Hypothesis:**

Test for independence of two attributes arranged in r X s contingency table, McNemar's test

Test for 'Goodness of Fit'. (Without rounding-off the expected frequencies).

0

d) Test for population variance equal to specified value. when i) mean is known, ii) mean is unknown. Tests based on t-distribution:

t-tests for population means: i) one sample and two sample tests for one sided and two sided alternatives. Confidence interval.

Paired t-test for one-sided and two-sided alternatives.

Test based on F-distribution:

Test for equality of two population variance. when i) means are known, ii) means are unknown.

